Applications of Semiconductor Nanomaterials in Renewable Energy
Research Article
Open Access
CC BY

Applications of Semiconductor Nanomaterials in Renewable Energy

Xiaoang Liu 1*
1 School of Physics and Material Science, Guangzhou University, Guangzhou, Guangdong, China, 510006
*Corresponding author: wuwulau39@gmail.com
Published on 4 July 2025
Journal Cover
ACE Vol.172
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-221-8
ISBN (Online): 978-1-80590-222-5
Download Cover

Abstract

With the rapid advancement of nanotechnology and material preparation techniques, semiconductor nanomaterials have garnered increasing attention across various fields due to their distinctive optical and catalytic properties. These materials hold significant potential for applications in renewable energy, particularly in solar energy utilization, owing to their high energy conversion efficiency and other superior physical characteristics. This article not only summarizes the definition and classification of semiconductor nanomaterials but also delves into their underlying mechanisms. Additionally, it examines their applications and advantages in the realm of renewable energy in light of current technological progress and offers insights into future prospects and challenges. Given the broad application potential and innovative nature of semiconductor nanomaterials, they are poised to significantly enhance the utilization of renewable energy. The research findings indicate that the strategic application of these nanomaterials can lead to substantial improvements in energy conversion efficiency and overall system performance, thereby contributing to a more sustainable and efficient energy future.

Keywords:

Semiconductor nanomaterials, renewable energy, solar cells, photocatalyticCO₂fixation, wind power generation

View PDF
Liu,X. (2025). Applications of Semiconductor Nanomaterials in Renewable Energy. Applied and Computational Engineering,172,68-74.

References

[1]. Fu, J. (2023). Perovskite Nanocrystals: Surface Passivation and Their Application in Solar Cells.

[2]. Fan, Q. , Liu, M. , Li, X. , & Ma, J. (2025). Research Progress on Halide Perovskite Nanocrystals and Porous Materials. Industry of Fine Chemicals, 42(2):298-305353.

[3]. Finance Channel. (2023). The application prospect of perovskite photovoltaic is promising, and six listed companies have laid out perovskite photovoltaic technology. Retrieved from http://mp. cnfol. com/26783/article/1703492972-141198281. html

[4]. China News Network. (2025). Zhejiang Baima Lake Laboratory has made a new breakthrough in the efficiency of perovskite solar cells. Retrieved from https://view. inews. qq. com/k/20250213A03DAA00?web_channel=wap&openApp=false

[5]. Le, A. T. , Samsuddin, N. S. B. , Chiam, S. L. , et al. (2021). Synergistic effect of pH solution and photocorrosion of ZnO particles on the photocatalytic degradation of Rhodamine B. Bulletin of Materials Science, 44(1), 1-10.

[6]. Liu, J. , Wang, Y. , Ma, J. , et al. (2019). A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. Journal of Alloys and Compounds, 783, 898-918.

[7]. Li, T. (2024). Preparation of TiO2 and CdS-based ternary composite nanomaterials and their photocatalytic hydrogen production performance [Master's thesis, Tianjin University of Technology]. DOI: 10. 27360/d. cnki. gtlgy. 2024. 000905.

[8]. Zhai, T. , Fang, X. , Bando, Y. , Dierre, B. , Liu, B. , Zeng, H. , Xu, X. , Huang, Y. , Yuan, X. , Sekiguchi, T. , & Golberg, D. (2009). Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures. Advanced Functional Materials, 19(15), 2423-2430.

[9]. Kelsey, K. , Sakimoto, A. B. W. , & Yang, P. (2016). Self-photosensitization of non-photosynthetic bacteria for solar-to-chemical production. Science, 351(6268), 74-77.

[10]. u, W. , Bai, H. , Zeng, Y. , Zhao, H. , Xia, S. , Huang, Y. , Lü, F. , & Wang, S. (2022). Solar-driven production of value-added chemicals with an organic semiconductor-bacteria biohybrid system. Research, 22. doi:10. 34133/2022/9834093.

[11]. Zhou, Q. Q. , Zou, Y. Q. , Lu, L. Q. , & Xiao, W. J. (2019). Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angewandte Chemie International Edition, 58(6), 1586-1604.

[12]. Yi, X. , Wu, J. , Wang, Y. (2023). Research progress on the use of semiconductor nanomaterials to mediate microbial fixation ofCO₂. Journal of Applied and Environmental Biology, 29(04), 795-802. DOI:10. 19675/j. cnki. 1006-687x. 2022. 11041.

[13]. Gai, P. , Yu, W. , Zhao, H. , Qi, R. , Li, F. , Liu, L. , Lü, F. , & Wang, S. (2020). Solar-powered organic semiconductor-bacteria biohybrids forCO₂reduction into acetic acid. Angewandte Chemie International Edition, 59(18), 7224-7229.

[14]. Yang, C. , Aslan, H. , Zhang, P. , Zhu, S. , Xiao, Y. , Chen, L. , Khan, N. , Boesen, T. , Wang, Y. , Liu, Y. , Wang, L. , Sun, Y. , Feng, Y. , Besenbacher, F. , Zhao, F. , & Yu, M. (2020). Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nature Communications, 11(1). doi:10. 1038/s41467-020-14866-0.

[15]. Liu, S. , Yi, X. , Wu, X. , Li, Q. , & Wang, Y. (2020). Internalized carbon dots for enhanced extracellular electron transfer in the dark and light. Small, 16(44). doi:10. 1002/smll. 202004194.

[16]. Zhang, H. , Liu, H. , Tian, Z. , Lu, D. , Yu, Y. , Cestellos-Blanco, S. , Sakimoto, K. K. , & Yang, P. (2018). Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nature Nanotechnology, 13(10), 900-905.

[17]. Luo, B. , Wang, Y. Z. , Li, D. , Shen, H. , Xu, L. X. , Fang, Z. , Xia, Z. , Ren, J. , Shi, W. , & Yong, Y. C. (2021). A periplasmic photosensitized biohybrid system for solar hydrogen production. Advanced Energy Materials, 11(19). doi:10. 1002/aenm. 202100256.

[18]. Cai, J. W. (2013). Preparation and electrochemical properties of carbon nanotube/manganese oxide nanocomposite electrodes [Master's thesis, Shaanxi Normal University].

[19]. Xie, G. L. , Guo, J. , Cao, W. N. , & Tian, J. (2013). Glass fiber/composite materials. Composite Materials, (Z3), 21-25.

Cite this article

Liu,X. (2025). Applications of Semiconductor Nanomaterials in Renewable Energy. Applied and Computational Engineering,172,68-74.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-FMCE 2025 Symposium: Semantic Communication for Media Compression and Transmission

ISBN: 978-1-80590-221-8(Print) / 978-1-80590-222-5(Online)
Editor: Anil Fernando
Conference date: 24 October 2025
Series: Applied and Computational Engineering
Volume number: Vol.172
ISSN: 2755-2721(Print) / 2755-273X(Online)