References
[1]. Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198, 109542.
[2]. Al-Saadi, N. T. K., Mohammed, A., Al-Mahaidi, R., & Sanjayan, J. (2019). A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures. Construction and Building Materials, 209, 748-769.
[3]. Benmokrane, B., Hassan, M., Robert, M., Vijay, P. V., & Manalo, A. (2020). Effect of different constituent fiber, resin, and sizing combinations on alkaline resistance of basalt, carbon, and glass FRP bars. Journal of Composites for Construction, 24(3), 04020010.
[4]. Khodadadi, N., Roghani, H., Harati, E., Mirdarsoltany, M., De Caso, F., & Nanni, A. (2024). Fiber-reinforced polymer (FRP) in concrete: A comprehensive survey. Construction and Building Materials, 432, 136634.
[5]. El-Saikaly, G., Godat, A., & Chaallal, O. (2015). New anchorage technique for FRP shear-strengthened RC T-beams using CFRP rope. Journal of composites for construction, 19(4), 04014064.
[6]. Hassan, T., & Rizkalla, S. (2003). Investigation of bond in concrete structures strengthened with near surface mounted carbon fiber reinforced polymer strips. Journal of composites for construction, 7(3), 248-257.
[7]. Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2020). Cost and environmental analyses of reinforcement alternatives for a concrete bridge. Structure and infrastructure engineering, 16(4), 787-802.
[8]. Hajiloo, H., & Green, M. F. (2018). Bond strength of GFRP reinforcing bars at high temperatures with implications for performance in fire. Journal of Composites for Construction, 22(6), 04018055.
[9]. Dong, Z., Wu, G., Xu, B., Wang, X., & Taerwe, L. (2016). Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction. Materials & Design, 92, 552-562.
[10]. Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., ... & Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction—State-of-the-art review. Journal of composites for construction, 6(2), 73-87.
[11]. Lee, W., Lee, J. U., & Byun, J. H. (2015). Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites. Composites Science and Technology, 110, 53-61.
[12]. Wahab, S., Salami, B. A., Danish, H., Nisar, S., AlAteah, A. H., & Alsubeai, A. (2025). A hybrid machine learning approach for predicting fiber-reinforced polymer-concrete interface bond strength. Engineering Applications of Artificial Intelligence, 148, 110458.
[13]. Ibrahim, M., Ebead, U., & Al-Ansari, M. (2020, April). Life cycle assessment for fiber-reinforced polymer (FRP) nComposites used in concrete beams: a state-of-the-art review. In Proceedings of the International Conference on Civil Infrastructure and Construction (CIC) (pp. 777-784).
[14]. Liu, T., Liu, X., & Feng, P. (2020). A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites Part B: Engineering, 191, 107958.
[15]. Hu, W., Li, Y., & Yuan, H. (2020). Review of experimental studies on application of FRP for strengthening of bridge structures. Advances in materials science and engineering, 2020(1), 8682163.
[16]. Hoffard, T. A., & Malvar, L. J. (2005). Fiber-reinforced polymer composites in bridges: a state-of-the-art report. Naval Facilities Engineering Service Center.
[17]. Banibayat, P. (2011). Experimental investigation of the mechanical and creep rupture properties of basalt fiber reinforced polymer (BFRP) bars. The University of Akron.
[18]. Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov, A. K., & Tamulėnas, V. (2013). FRP reinforcement for concrete structures: state-of-the-art review of application and design. Engineering Structures and Technologies, 5(4), 147-158.
[19]. Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189.
[20]. Amran, Y. M., Alyousef, R., Rashid, R. S., Alabduljabbar, H., & Hung, C. C. (2018, November). Properties and applications of FRP in strengthening RC structures: A review. In Structures (Vol. 16, pp. 208-238). Elsevier.
[21]. Monaldo, E., Nerilli, F., & Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246-263.
[22]. Ozkan, D., Gok, M. S., & Karaoglanli, A. C. (2020). Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability. Engineering Design Applications III: Structures, Materials and Processes, 235-253.
[23]. Ashrafi, H., Bazli, M., Najafabadi, E. P., & Oskouei, A. V. (2017). The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures. Construction and building materials, 157, 1001-1010.
[24]. Najaf, E., Orouji, M., & Ghouchani, K. (2022). Finite element analysis of the effect of type, number, and installation angle of FRP sheets on improving the flexural strength of concrete beams. Case Studies in Construction Materials, 17, e01670.
[25]. Pohoryles, D. A., Melo, J., Rossetto, T., Varum, H., & Bisby, L. (2019). Seismic retrofit schemes with FRP for deficient RC beam-column joints: State-of-the-art review. Journal of Composites for Construction, 23(4), 03119001.
[26]. Pham, T. M., Youssed, J., Hadi, M. N., & Tran, T. M. (2016). Effect of different FRP wrapping arrangements on the confinement mechanism. Procedia Engineering, 142, 307-313.
[27]. Rashid, A. B., Haque, M., Islam, S. M., & Labib, K. R. U. (2024). Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon, 10(2), e24692.
[28]. Al-Zu'bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549.
[29]. Al-Zu'bi, M., Anguilano, L., & Fan, M. (2023). Carbon-Based and Silicon-Based Nanomaterials for Enhanced Structural Adhesives. Solid State Phenomena, 354, 151-159.
[30]. Li, J., Xie, J., Liu, F., & Lu, Z. (2019). A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments. Composite Structures, 229, 111372.
[31]. Al-Zu’bi, M. I. (2023). Nanotechnology-Enhanced Near-Surface Mounted-Fibre Reinforced Polymers (NSM-FRP) Structural Retrofitting (Doctoral dissertation, Brunel University London).
[32]. Alhusban, M., Alhusban, M., & Alkhawaldeh, A. A. (2024). The efficiency of using machine learning techniques in fiber-reinforced-polymer applications in structural engineering. Sustainability, 16(1), 11.
[33]. Wakjira, T. G., Abushanab, A., Ebead, U., & Alnahhal, W. (2022). FAI: Fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model. Materials Today Communications, 33, 104461.
[34]. Yossef, M., Noureldin, M., & Alqabbany, A. (2024). Explainable artificial intelligence framework for FRP composites design. Composite Structures, 341, 118190.
[35]. McIsaac, A., & Fam, A. (2018). The effect of bio-based content in resin blends on tensile properties of FRP wet layup systems. Construction and Building Materials, 168, 328-337.
[36]. Hofmann, M., Shahid, A. T., Machado, M., Garrido, M., Bordado, J. C., & Correia, J. R. (2022). GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Composites Part A: Applied Science and Manufacturing, 161, 107098.
[37]. Harle, S. M. (2024, February). Durability and long-term performance of fiber reinforced polymer (FRP) composites: A review. In Structures (Vol. 60, p. 105881). Elsevier.
[38]. Benzarti, K., Chlela, R., Zombré, W., Quiertant, M., & Curtil, L. (2018). Durability of flax/bio-based epoxy composites intended for structural strengthening. In MATEC Web of Conferences (Vol. 199, p. 07014). EDP Sciences.
[39]. McSwiggan, C., & Fam, A. (2017). Bio-based resins for flexural strengthening of reinforced concrete beams with FRP sheets. Construction and building materials, 131, 618-629.
[40]. Wang, Z., Zhao, X. L., Xian, G., Wu, G., Raman, R. S., Al-Saadi, S., & Haque, A. (2017). Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Construction and Building Materials, 139, 467-489.
[41]. Cabral-Fonseca, S., Correia, J. R., Custódio, J., Silva, H. M., Machado, A. M., & Sousa, J. (2018). Durability of FRP-concrete bonded joints in structural rehabilitation: A review. International Journal of Adhesion and Adhesives, 83, 153-167.
[42]. Guo, F., Al-Saadi, S., Raman, R. S., & Zhao, X. L. (2018). Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment. Corrosion Science, 141, 1-13.
[43]. Bank, L. C. (2006). Composites for construction: structural design with FRP materials. John Wiley & Sons.
[44]. Ceroni, F., Cosenza, E., Gaetano, M., & Pecce, M. (2006). Durability issues of FRP rebars in reinforced concrete members. Cement and concrete composites, 28(10), 857-868.
[45]. Bazli, M., & Abolfazli, M. (2020). Mechanical properties of fibre reinforced polymers under elevated temperatures: An overview. Polymers, 12(11), 2600.
[46]. Tan, K. H., & Zhou, Y. (2011). Performance of FRP-strengthened beams subjected to elevated temperatures. Journal of Composites for Construction, 15(3), 304-311.
[47]. Garg, N., & Shrivastava, S. (2019, March). Environmental and economic comparison of FRP reinforcements and steel reinforcements in concrete beams based on design strength parameter. In Proceedings of the UKIERI Concrete Congress, Jalandhar, India (pp. 5-8).
[48]. Inman, M., Thorhallsson, E. R., & Azrague, K. (2017). A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy procedia, 111, 31-40.
[49]. Kim, Y. J. (2019). State of the practice of FRP composites in highway bridges. Engineering Structures, 179, 1-8.
[50]. Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2019). Life-cycle cost and life-cycle assessment analysis at the design stage of a fiber-reinforced polymer-reinforced concrete bridge in Florida. Advances in Civil Engineering Materials, 8(2), 128-151.
[51]. Ortiz, J. D., Khedmatgozar Dolati, S. S., Malla, P., Nanni, A., & Mehrabi, A. (2023). FRP-reinforced/strengthened concrete: State-of-the-art review on durability and mechanical effects. Materials, 16(5), 1990.
[52]. Baky, H. A., Ebead, U. A., & Neale, K. W. (2007). Flexural and interfacial behavior of FRP-strengthened reinforced concrete beams. Journal of Composites for Construction, 11(6), 629-639.