Review on FRP Strengthened Concrete Structures: Current Advances, Challenges and Emerging Innovations
Research Article
Open Access
CC BY

Review on FRP Strengthened Concrete Structures: Current Advances, Challenges and Emerging Innovations

Manquan Li 1* Yingshi Du 2, Manlin Li 3
1 Hohai-Lille Institute, Hohai University, Nanjing, China, 210098
2 Environment Institute, South China Normal University, Guangzhou, China, 511400
3 School of Civil and Transportation Engineering, Guangdong University of Technology, Guangdong, China, 510006
*Corresponding author: manquan_li@163.com
Published on 4 July 2025
Journal Cover
ACE Vol.172
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-221-8
ISBN (Online): 978-1-80590-222-5
Download Cover

Abstract

Fiber-Reinforced Polymer (FRP) composites have revolutionized the rehabilitation of aging concrete structures by addressing limitations of traditional materials, such as corrosion susceptibility and heavyweight. FRP variants—carbon, glass, basalt, and aramid—offer exceptional strength-to-weight ratios, corrosion resistance, and adaptability, enabling non-invasive retrofitting via externally bonded (EB) laminates, near-surface mounted (NSM) bars, and prefabricated grids. These techniques enhance flexural, shear, and seismic performance in beams, columns, and bridges, exemplified by long-term durability in projects like Switzerland’s Ibach Bridge. Emerging innovations include nanotechnology-enhanced adhesives to mitigate debonding, machine learning models for predictive structural analysis, and sustainable bio-based FRPs derived from renewable resources. However, challenges persist in interfacial durability, fire resistance, and standardized design protocols, particularly under environmental stressors or elevated temperatures. While FRP reduces lifecycle emissions and energy consumption compared to steel, economic viability and long-term performance in extreme conditions require further validation. Future research must prioritize fire-resistant formulations, predictive aging models, and interdisciplinary collaboration to optimize FRP’s role in sustainable, resilient infrastructure. This review synthesizes advancements and unresolved gaps, guiding practical implementation and fostering FRP’s potential in modern structural engineering.

Keywords:

Fiber-reinforced polymer, Structural strengthening, Nano-adhesives, machine learning, Bio-composites

View PDF
Li,M.;Du,Y.;Li,M. (2025). Review on FRP Strengthened Concrete Structures: Current Advances, Challenges and Emerging Innovations. Applied and Computational Engineering,172,18-28.

References

[1]. Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198, 109542.

[2]. Al-Saadi, N. T. K., Mohammed, A., Al-Mahaidi, R., & Sanjayan, J. (2019). A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures. Construction and Building Materials, 209, 748-769.

[3]. Benmokrane, B., Hassan, M., Robert, M., Vijay, P. V., & Manalo, A. (2020). Effect of different constituent fiber, resin, and sizing combinations on alkaline resistance of basalt, carbon, and glass FRP bars. Journal of Composites for Construction, 24(3), 04020010.

[4]. Khodadadi, N., Roghani, H., Harati, E., Mirdarsoltany, M., De Caso, F., & Nanni, A. (2024). Fiber-reinforced polymer (FRP) in concrete: A comprehensive survey. Construction and Building Materials, 432, 136634.

[5]. El-Saikaly, G., Godat, A., & Chaallal, O. (2015). New anchorage technique for FRP shear-strengthened RC T-beams using CFRP rope. Journal of composites for construction, 19(4), 04014064.

[6]. Hassan, T., & Rizkalla, S. (2003). Investigation of bond in concrete structures strengthened with near surface mounted carbon fiber reinforced polymer strips. Journal of composites for construction, 7(3), 248-257.

[7]. Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2020). Cost and environmental analyses of reinforcement alternatives for a concrete bridge. Structure and infrastructure engineering, 16(4), 787-802.

[8]. Hajiloo, H., & Green, M. F. (2018). Bond strength of GFRP reinforcing bars at high temperatures with implications for performance in fire. Journal of Composites for Construction, 22(6), 04018055.

[9]. Dong, Z., Wu, G., Xu, B., Wang, X., & Taerwe, L. (2016). Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction. Materials & Design, 92, 552-562.

[10]. Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., ... & Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction—State-of-the-art review. Journal of composites for construction, 6(2), 73-87.

[11]. Lee, W., Lee, J. U., & Byun, J. H. (2015). Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites. Composites Science and Technology, 110, 53-61.

[12]. Wahab, S., Salami, B. A., Danish, H., Nisar, S., AlAteah, A. H., & Alsubeai, A. (2025). A hybrid machine learning approach for predicting fiber-reinforced polymer-concrete interface bond strength. Engineering Applications of Artificial Intelligence, 148, 110458.

[13]. Ibrahim, M., Ebead, U., & Al-Ansari, M. (2020, April). Life cycle assessment for fiber-reinforced polymer (FRP) nComposites used in concrete beams: a state-of-the-art review. In Proceedings of the International Conference on Civil Infrastructure and Construction (CIC) (pp. 777-784).

[14]. Liu, T., Liu, X., & Feng, P. (2020). A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites Part B: Engineering, 191, 107958.

[15]. Hu, W., Li, Y., & Yuan, H. (2020). Review of experimental studies on application of FRP for strengthening of bridge structures. Advances in materials science and engineering, 2020(1), 8682163.

[16]. Hoffard, T. A., & Malvar, L. J. (2005). Fiber-reinforced polymer composites in bridges: a state-of-the-art report. Naval Facilities Engineering Service Center.

[17]. Banibayat, P. (2011). Experimental investigation of the mechanical and creep rupture properties of basalt fiber reinforced polymer (BFRP) bars. The University of Akron.

[18]. Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov, A. K., & Tamulėnas, V. (2013). FRP reinforcement for concrete structures: state-of-the-art review of application and design. Engineering Structures and Technologies, 5(4), 147-158.

[19]. Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189.

[20]. Amran, Y. M., Alyousef, R., Rashid, R. S., Alabduljabbar, H., & Hung, C. C. (2018, November). Properties and applications of FRP in strengthening RC structures: A review. In Structures (Vol. 16, pp. 208-238). Elsevier.

[21]. Monaldo, E., Nerilli, F., & Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246-263.

[22]. Ozkan, D., Gok, M. S., & Karaoglanli, A. C. (2020). Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability. Engineering Design Applications III: Structures, Materials and Processes, 235-253.

[23]. Ashrafi, H., Bazli, M., Najafabadi, E. P., & Oskouei, A. V. (2017). The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures. Construction and building materials, 157, 1001-1010.

[24]. Najaf, E., Orouji, M., & Ghouchani, K. (2022). Finite element analysis of the effect of type, number, and installation angle of FRP sheets on improving the flexural strength of concrete beams. Case Studies in Construction Materials, 17, e01670.

[25]. Pohoryles, D. A., Melo, J., Rossetto, T., Varum, H., & Bisby, L. (2019). Seismic retrofit schemes with FRP for deficient RC beam-column joints: State-of-the-art review. Journal of Composites for Construction, 23(4), 03119001.

[26]. Pham, T. M., Youssed, J., Hadi, M. N., & Tran, T. M. (2016). Effect of different FRP wrapping arrangements on the confinement mechanism. Procedia Engineering, 142, 307-313.

[27]. Rashid, A. B., Haque, M., Islam, S. M., & Labib, K. R. U. (2024). Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon, 10(2), e24692.

[28]. Al-Zu'bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549.

[29]. Al-Zu'bi, M., Anguilano, L., & Fan, M. (2023). Carbon-Based and Silicon-Based Nanomaterials for Enhanced Structural Adhesives. Solid State Phenomena, 354, 151-159.

[30]. Li, J., Xie, J., Liu, F., & Lu, Z. (2019). A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments. Composite Structures, 229, 111372.

[31]. Al-Zu’bi, M. I. (2023). Nanotechnology-Enhanced Near-Surface Mounted-Fibre Reinforced Polymers (NSM-FRP) Structural Retrofitting (Doctoral dissertation, Brunel University London).

[32]. Alhusban, M., Alhusban, M., & Alkhawaldeh, A. A. (2024). The efficiency of using machine learning techniques in fiber-reinforced-polymer applications in structural engineering. Sustainability, 16(1), 11.

[33]. Wakjira, T. G., Abushanab, A., Ebead, U., & Alnahhal, W. (2022). FAI: Fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model. Materials Today Communications, 33, 104461.

[34]. Yossef, M., Noureldin, M., & Alqabbany, A. (2024). Explainable artificial intelligence framework for FRP composites design. Composite Structures, 341, 118190.

[35]. McIsaac, A., & Fam, A. (2018). The effect of bio-based content in resin blends on tensile properties of FRP wet layup systems. Construction and Building Materials, 168, 328-337.

[36]. Hofmann, M., Shahid, A. T., Machado, M., Garrido, M., Bordado, J. C., & Correia, J. R. (2022). GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Composites Part A: Applied Science and Manufacturing, 161, 107098.

[37]. Harle, S. M. (2024, February). Durability and long-term performance of fiber reinforced polymer (FRP) composites: A review. In Structures (Vol. 60, p. 105881). Elsevier.

[38]. Benzarti, K., Chlela, R., Zombré, W., Quiertant, M., & Curtil, L. (2018). Durability of flax/bio-based epoxy composites intended for structural strengthening. In MATEC Web of Conferences (Vol. 199, p. 07014). EDP Sciences.

[39]. McSwiggan, C., & Fam, A. (2017). Bio-based resins for flexural strengthening of reinforced concrete beams with FRP sheets. Construction and building materials, 131, 618-629.

[40]. Wang, Z., Zhao, X. L., Xian, G., Wu, G., Raman, R. S., Al-Saadi, S., & Haque, A. (2017). Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Construction and Building Materials, 139, 467-489.

[41]. Cabral-Fonseca, S., Correia, J. R., Custódio, J., Silva, H. M., Machado, A. M., & Sousa, J. (2018). Durability of FRP-concrete bonded joints in structural rehabilitation: A review. International Journal of Adhesion and Adhesives, 83, 153-167.

[42]. Guo, F., Al-Saadi, S., Raman, R. S., & Zhao, X. L. (2018). Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment. Corrosion Science, 141, 1-13.

[43]. Bank, L. C. (2006). Composites for construction: structural design with FRP materials. John Wiley & Sons.

[44]. Ceroni, F., Cosenza, E., Gaetano, M., & Pecce, M. (2006). Durability issues of FRP rebars in reinforced concrete members. Cement and concrete composites, 28(10), 857-868.

[45]. Bazli, M., & Abolfazli, M. (2020). Mechanical properties of fibre reinforced polymers under elevated temperatures: An overview. Polymers, 12(11), 2600.

[46]. Tan, K. H., & Zhou, Y. (2011). Performance of FRP-strengthened beams subjected to elevated temperatures. Journal of Composites for Construction, 15(3), 304-311.

[47]. Garg, N., & Shrivastava, S. (2019, March). Environmental and economic comparison of FRP reinforcements and steel reinforcements in concrete beams based on design strength parameter. In Proceedings of the UKIERI Concrete Congress, Jalandhar, India (pp. 5-8).

[48]. Inman, M., Thorhallsson, E. R., & Azrague, K. (2017). A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy procedia, 111, 31-40.

[49]. Kim, Y. J. (2019). State of the practice of FRP composites in highway bridges. Engineering Structures, 179, 1-8.

[50]. Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2019). Life-cycle cost and life-cycle assessment analysis at the design stage of a fiber-reinforced polymer-reinforced concrete bridge in Florida. Advances in Civil Engineering Materials, 8(2), 128-151.

[51]. Ortiz, J. D., Khedmatgozar Dolati, S. S., Malla, P., Nanni, A., & Mehrabi, A. (2023). FRP-reinforced/strengthened concrete: State-of-the-art review on durability and mechanical effects. Materials, 16(5), 1990.

[52]. Baky, H. A., Ebead, U. A., & Neale, K. W. (2007). Flexural and interfacial behavior of FRP-strengthened reinforced concrete beams. Journal of Composites for Construction, 11(6), 629-639.

Cite this article

Li,M.;Du,Y.;Li,M. (2025). Review on FRP Strengthened Concrete Structures: Current Advances, Challenges and Emerging Innovations. Applied and Computational Engineering,172,18-28.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-FMCE 2025 Symposium: Semantic Communication for Media Compression and Transmission

ISBN: 978-1-80590-221-8(Print) / 978-1-80590-222-5(Online)
Editor: Anil Fernando
Conference date: 24 October 2025
Series: Applied and Computational Engineering
Volume number: Vol.172
ISSN: 2755-2721(Print) / 2755-273X(Online)