References
[1]. Clean Energy Reviews. Solar Panel Components & Construction [EB/OL]. https: //www.cleanenergyreviews.info/blog/solar-panel-components-construction, 2023.
[2]. Xu C, Zhang Y. Degradation and recycling of encapsulation materials in photovoltaic modules: A review [J]. Solar Energy Materials and Solar Cells, 2024, 259: 112154.
[3]. Mahmud M, Huda N, Farjana S. A review of degradation mechanisms of EVA encapsulant in photovoltaic modules [J]. Renewable and Sustainable Energy Reviews, 2022, 143: 110888.
[4]. Zhang W, Li H, Liu F. Weather resistance analysis of backsheet materials for PV modules [J]. Renewable Energy, 2023, 215: 118–126.
[5]. Zhang X, Sun Y, et al. Advances in crystalline silicon solar cell technology for industrial mass production [J]. Nature Materials, 2010, 9(6): 454–458.
[6]. IEA-PVPS. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies [R]. International Energy Agency, 2022.
[7]. Farrell C., Osman A.I., Harrison J., et al. Pyrolysis Kinetic Modeling of a Poly(ethylene-co-vinyl acetate) Encapsulant Found in Waste Photovoltaic Modules. Industrial & Engineering Chemistry Research, 2021, 60(35): 12982–12992. DOI: 10.1021/acs.iecr.1c01989.
[8]. Tao R., Li B., Wu Y., Zhang W., Yuan H., Gu J., Chen Y. Pyrolysis mechanism and recycling strategy of end-of-life photovoltaic modules based on the experiment and the density functional theory. Polymer Degradation and Stability, 2023, 217: 110545. DOI: 10.1016/j.polymdegradstab.2023.110545.
[9]. Huang Q., Zhang Y., Zhang M., et al. Thermal separation of plastic components from waste crystalline silicon solar cells: Thermogravimetric characteristics and thermokinetics. Journal of the Air & Waste Management Association, 2023, 73(11): 853–864. DOI: 10.1080/10962247.2023.2262426.
[10]. Farrell C., Osman A.I., Zhang X., et al. Assessment of the energy recovery potential of waste Photovoltaic modules. Scientific Reports, 2019, 9: 5267. DOI: 10.1038/s41598-019-41762-5.
[11]. Królikowski M., Fotek M., Żach P., Michałowski M. Development of a Recycling Process and Characterization of EVA, PVDF, and PET Polymers from End-of-Life PV Modules. Materials, 2024, 17(4): 821. DOI: 10.3390/ma17040821.
[12]. Wang R., Song E., Zhang C., et al. Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Advances, 2019, 9(35): 20352–20360.
[13]. Danz P., Aryan V., Möhle E., Nowara N. Experimental Study on Fluorine Release from Photovoltaic Backsheet Materials Containing PVF and PVDF during Pyrolysis and Incineration in a Technical Lab-Scale Reactor at Various Temperatures. Toxics, 2019, 7(3): 47.
[14]. Chen X, Liu J, Lin Z, et al. Reutilizing waste photovoltaic plastics by pyrolysis: Dynamics, thermodynamics, mechanisms, products, and optimization [J]. Fuel, 2025, 384: 134005.
[15]. Zhang Y, Gu J, Wu B, et al. Thermochemical recycling of end-of-life photovoltaic laminates using pyrolysis: Interaction mechanisms and fluorine migration and transformation [J]. Resources, Conservation & Recycling, 2025, 219: 108312.