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Abstract. This paper focuses on the research of ancient building staircases, developing multiple
models for wear analysis and traffic flow prediction. Firstly, relevant data on wear and traffic
flow are collected, including material properties, surface conditions, and the number of staircase
users. Model I is based on material mechanics and surface wear theory, constructing W = f (F, D,
M) to examine the degree of wear; Model II combines LWR traffic flow and queuing theory,
constructing Q = g(ρ, v, lq, tq) to analyze traffic flow; Model III is a PSO model that improves
the first two, using the mean square error between predicted and actual data as the fitness
function. The results show that the staircase wear model has good explanatory power, the traffic
flow model has a high accuracy rate during peak and off-peak hours, and the mean square error
of the combined model after PSO optimization is reduced by 30%, with improved fitting
performance, providing an important reference for the maintenance, protection, and usage
planning of ancient building staircases.
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1.  Introduction

Due to long-term use and natural weathering, ancient architectural steps are often subject to uneven wear
and tear, such as depressions in the center and scratches on the surface. In order to investigate the use and
wear patterns of steps, the study centers on step wear and pedestrian flow, focusing on eight tasks:
analyzing the frequency of use, the preference of pedestrian walking direction, the number of people
using the steps at the same time and the walking pattern (side-by-side or sequential), evaluating the
consistency of wear and tear with the existing information, deducing the age and reliability of the steps,
tracing the history of maintenance, verifying the source of the materials, and the pattern of change of the
flow of people in different time periods. These tasks aim to reveal the association between step wear,
human activities, and material properties through multi-dimensional analysis to provide a basis for
scientific maintenance.

In this study, an analytical model is constructed based on four assumptions: first, it is assumed that
step wear increases uniformly with time under normal use, and the future state can be predicted by linear
regression; second, 3D laser scanning is used to accurately obtain step surface data and quantify the depth
and area of wear; third, it is assumed that the effects of pedestrian flow, frequency of use, and material on
wear are independent of each other, which facilitates single-factor analysis; and finally, it is assumed that
the data collected are comprehensive and accurate, which ensures the reliability of the model. collected
data are comprehensive and accurate to ensure the reliability of the model. Through the analysis of
thermal imaging and basic prediction map, it is initially verified that the degree of wear is positively
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correlated with natural and human factors, which lays the foundation for the subsequent establishment of
a scientific wear prediction and maintenance decision-making model.

The following figure 1 shows the basic predictions of the varying degrees of wear with different
factors. We first presented different types of basic images for analysis. For further research, we then used
thermal imaging to visually display the effect of the changes.The results are shown in Figure 1.

Figure 1: Basic Prediction of Wear Degree with Different Factors

2.  Model building

2.1.  Model I: Wear model of stairs in ancient buildings

Historical research shows that regardless of the durability of the materials, all structures wear out over
time due to the continuous action of external forces [1]. Ancient staircases were necessary for connecting
floors and supporting foot traffic, and they would experience friction and pressure during daily use.
Uneven walking patterns and different usage frequencies led to uneven wear. For instance, in many
temples and churches, the centers of the steps wore out more than the edges due to frequent trampling,
causing the originally flat surfaces to become curved.

To study this kind of wear, we used a laser rangefinder for precise depth measurement, digital image
analysis for wear distribution, and 3D scanning for detailed model analysis. By modeling factors such as
usage frequency, walking direction, and concurrent users, and analyzing wear data across time and
regions, we established a mathematical model that accurately reflects the actual usage and wear patterns
of the stairs.

Based on the description just provided, we innovatively set wear as a quantifiable indicator, wear
degree d(x,y), expressed as a percentage coefficient. Then, through the analysis of the initial wear data,
the wear degree is set to be mainly affected by the wear depth d1(x,y), while also being influenced by
secondary conditions such as surface flatness d2, scratches d3, and dents d4. Therefore, the wear degree
d(x,y) can be calculated as follows:

Among them, w1, w2, w3, and w4 are the influence weight coefficients of the wear depth d1(x,y),
surface flatness d2, scratch d3, and dent d4 on the wear degree d(x,y), respectively. The determination of
these weight coefficients should be based on specific research purposes and actual conditions, and set
through experimental data or empirical judgment. Our research focus is on the macroscopic wear changes
on the surface, that is, a larger weight w1 is assigned to the wear depth d1(x,y).

After further quantifying the wear as the wear depth d1(x,y), we can conduct a data-based analysis of
the wear and find that it is related to factors such as the material's wear resistance coefficient, usage

d(x, y) = w1 ⋅ d1(x, y) + w2 ⋅ d2 + w3 ⋅ d3 + w4 ⋅ d4
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frequency, directional relationship, and the number of users. Through further design, the wear depth
d1(x,y) can be calculated by the following method:

Among them, a is the wear resistance coefficient of the material ; f(x,y) represents the usage frequency
; v(x, y) represents the relation of direction ; n(x, y) represents the number of users ; e(x, y) is the error
term.

This formula establishes a quantitative relationship between wear depth d1(x,y), usage frequency
f(x,y), directional relationship v(x,y), and material property a. It allows us to analyze the impact of these
factors on wear depth. For example, with other factors constant, higher usage frequency f(x,y) leads to
greater wear depth d1(x,y). Including the error term e(x,y) makes the model more realistic, as actual wear
is influenced by multiple complex factors. This formula provides a foundation for studying stair wear
mechanisms and inferring stair usage from measured wear depth.

To analyze the staircase wear data, we focus on three key factors: usage frequency f(x,y), directional
relationship n(x,y), and error term e(x,y). Usage frequency f(x,y) depends on the building's function,
usage time, and foot traffic. For instance, temple staircases see higher usage during religious festivals,
while residential staircases have stable but fluctuating patterns, especially during peak hours like
mornings and evenings. We approximate f(x,y) as the number of people passing a specific point (x,y)
within a time period T.

This formula provides an intuitive method for quantifying usage frequency, which is crucial for
studying the wear patterns of stairs, as usage frequency is one of the key factors influencing the depth of
wear. By analyzing the distribution of usage frequency at different positions on the stairs, we can further
understand the reasons for the differences in wear in different areas of the stairs.

The directional relationship v(x,y) reflects people's walking preferences on stairs, influenced by
factors like stair layout, building function, and walking habits. For example, if a staircase connects an
entrance hall with office floors, people may predominantly walk upwards in the morning and downwards
in the evening. Additionally, physical factors such as stair width and handrail position can also affect
walking direction.

We can define a directional preference coefficient to quantify the directional relationship. Suppose
within a certain time period, the number of people passing through the staircase position (x, y) in a
certain direction (such as the upward direction) is Nup(x, y), and the number of people passing through in
the opposite direction (such as the downward direction) is Ndown(x, y), then the directional relationship
v(x, y) can be expressed as:

Remark:
(i) v(x, y) = 1 indicates that all people are walking in the direction of going upstairs.
(ii) v(x, y) = -1 it indicates that all people are walking in the direction of going downstairs.
(iii) v(x, y) = 0 indicates that the number of people going upstairs and downstairs is equal, and there is

no obvious directional preference.
This formula is crucial for studying staircase wear patterns, as directional preferences can cause

uneven wear. For example, if v(x,y) is higher on one side, it indicates more people walk in that direction,

d1(x, y) = a ⋅ v(x, y) ⋅ f(x, y) ⋅ n(x, y) ⋅ t + e(x, y)

f(x, y) =
N(x,y)

T

v(x, y) =
Nup(x,y)−Ndown(x,y)
Nup(x,y)+Ndown(x,y)
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leading to greater wear depth d1(x,y) on that side. This provides a strong basis for researching staircase
usage and historical changes and helps archaeologists infer traffic patterns, such as potential one-way
traffic at specific times.

Finally, e(x,y) is the error term that accounts for random and uncertain factors in the model, such as
material differences and environmental differences . Although these factors are hard to quantify precisely,
the error term e(x,y) helps accurately describe deviations between actual wear and the theoretical model.
During calculations, the value of e(x,y) approaches 0.

In addition, the number of users n(x,y) was analyzed and found to be influenced by multiple factors.
We established Model 2 to further explain this, which is why it was not mentioned in this analysis.

2.2.  Model II: Pedestrian flow model

We hope to conduct quantitative analysis on the number of users to facilitate our subsequent research on
the flow of people. Therefore, we have designed it from two aspects: basic analysis and advanced
analysis incorporating time.

First, we analyze the influencing factors of the human flow model n(x,y). We combine the LWR traffic
flow theory and queuing theory [2] to conduct supplementary analysis on it. We introduce relevant
factors such as the width of the staircase, walking speed, traffic flow density, queue length, queuing time,
and entrances and exits. Then, the final human flow model n(x,y) can be calculated as follows:

Where w represents the width of the staircase. The wider the staircase, the greater the theoretical
capacity for pedestrian flow, and it has a positive correlation with n(x,y) ; Where v represents the walking
speed. The faster the average walking speed, the more people can pass through in a unit of time, and it
generally has a positive correlation with n(x,y) ; Where ρ represents the traffic flow density, which is the
number of people per unit area. It reflects the degree of congestion on the staircase and has a positive
correlation with n(x,y) ; Where lq represents the queue length. The longer the queue, the greater the
obstruction to passage, and the lower the pedestrian flow. lq/lMAX represents the proportion of the queue
length to the maximum possible queue length, and it has a negative correlation with n(x,y) ; Where tq
represents the queue time. The longer the queue time, the greater the inhibitory effect on pedestrian flow.
(1-e^(-tq/tavg)) represents the degree of influence of queue time on pedestrian flow. When it is 0, this term
is 0, and it has no effect on pedestrian flow; as it increases, this term gradually approaches 1, and the
inhibitory effect gradually strengthens, where tavg is the average queue time ; Where f(Ain,Aout) is a
function related to the factors of the entrance and exit, used to represent the influence of the size,
quantity, and passage capacity of the entrance and exit on the flow of people. For instance, it can be set as
f(Ain, Aout) = (Ain + Aout) / Atotal, where Ain and Aout are the effective passage areas of the entrance and
exit respectively, and Atotal is the reference area of the staircase and the entrance and exit as a whole. The
larger the value of this function, the stronger the promoting effect of the entrance and exit on the flow of
people.

This formula comprehensively considers the influence of multiple factors such as stair width, walking
speed, and traffic flow density on the volume of people, among which the factors related to queuing and
the entrance and exit play a regulatory role. It can relatively comprehensively reflect the actual situation
of the volume of people on the stairs and help analyze and predict the usage of the stairs under different
conditions.

n x, y = w⋅v⋅p

1+
lq

lmax

−
tq
tavg

inout

⎛

⎝

⎞

⎠
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Secondly, we introduce a time variable to analyze the problem and use a sinusoidal wave period model
for time-related issues. We assume that the daily flow of people in the staircase building has a distinct
periodicity: concentrated entry in the morning, fluctuating during noon, and minimal after evening
departure. Let t represent time in hours within a day (0 ≤ t ≤ 24). The final model for the flow of people
n(x, y, t) can be calculated as follows:

The amplitude A represents the magnitude of fluctuations in the number of people. It is influenced by
activity patterns within the building and special events. For example, periodic large-scale activities cause
significant fluctuations in occupancy, resulting in a larger amplitude ; The frequency w indicates the
speed of the cycle of the change in the number of people. It is related to the nature of the building's use
and the daily activity schedule. For example, office buildings may have a cycle based on working days,
while school buildings may have a cycle based on class schedules, and different cycles will result in
different frequencies ; The phase φ reflects the starting time of the change in the flow of people, which is
related to factors such as the start time of activities within the building. For instance, if activities typically
commence at 9 a.m., the phase will correspondingly reflect this starting time, causing the sine wave to
begin fluctuating at the appropriate time ; The bias term B represents the base level of pedestrian flow,
which is related to the basic function of the building, the number of permanent residents, and so on.

This formula, by analyzing pedestrian flow patterns, helps study crowd activity, such as rest time
distribution and inter-floor communication frequency. Practically, it guides the scheduling of cleaning
times and maintenance of stair facilities. Additionally, when designing or renovating stairs, this model
can predict pedestrian flow at different times and optimize parameters like the number and width of
stairs.

2.3.  Model III: Particle Swarm optimization model

Furthermore, in the research of practical problems, we have further considered the optimality of the final
results. To achieve the optimization of the final results, in multiple practical problems, we have
established a PSO particle swarm optimization model[4]with f(x,y) and n(x,y) as the optimization
criteria.

For the analysis of minimizing the error term, we adopted the sum of squared errors formula and
designed a loss function for minimizing the loss, which is used to optimize the minimization of errors.
The calculation formula is as follows:

This formula squares the error of each data point and then sums them up in order to comprehensively
consider the error situation of all data points. The reason for doing this is that errors may be positive or
negative, and directly adding them up would cancel each other out. Squaring ensures that all errors are
accumulated and amplifies the impact of larger errors, highlighting the degree of deviation between the
model and the actual situation more prominently.

Furthermore, some of the results are not entirely applicable to the sum of squared errors. To
supplement the optimization results, we adopted residual analysis to calculate the mean squared error,
and the calculation formula is as follows:

n(x, y, t) = Asin(wt + ϕ) + B

SSE = ∑m
i=1[d1i(x, y) − d̂1i(x, y)]2 = ∑m

i=1 [d1i(x, y) − a × v(xi, yi) × f(xi, yi) × n(xi, yi)]
2

MSE = 1
m ∑m

i=1[d1i(x, y) − d̂1i(x, y)]2 = 1
m ∑m

i=1 [d1i(x, y) − a × v(xi, yi) × f(xi, yi) × n(xi, yi)



Proceedings	of	the	3rd	International	Conference	on	Functional	Materials	and	Civil	Engineering
DOI:	10.54254/2755-2721/2025.24448

6

In the issue of wear, the directional relationship between wear depth and usage frequency, pedestrian
flow, and material properties, among other factors,  
  is described. The PSO (Particle Swarm Optimization) model can treat v(x,y), a, etc. as the attributes or
decision variables of particles, and optimize d1(x,y) and n(x,y) by adjusting these variables. For instance,
the position of a particle can represent different combinations of v(x,y) and a. Through the iterative
search of the particle swarm, the values of v(x,y) and a that make d1(x,y) and n(x,y) reach a certain
optimal goal (such as the best fit with actual measurement data) can be found. Usage method: Firstly,
determine the fitness function, for example, the fitness function can be constructed based on the sum of
squared errors or mean squared error to measure the difference between the calculated values of d1(x,y)
and n(x,y) under the current v(x,y) and a values and the actual measured values. Then, initialize the
positions and velocities of the particle swarm, with each particle representing a possible solution of v(x,y)
and a. During the iteration process, particles update their velocities and positions based on their own
historical optimal positions and the global optimal position of the swarm, continuously searching for
better combinations of v(x,y) and a, thereby optimizing d1(x,y) and n(x,y). The specific calculation
formulas are as follows:

Velocity update formula:  
Vid

k+1: The velocity of particle i in dimension d at the (k + 1)th iteration.
vid

k: The velocity of particle i in dimension d at the k-th iteration.
w: The inertia weight, which is used to control the degree to which particles inherit their current

velocity, is larger for facilitating global search and smaller for facilitating local search.
c1,c2: The learning factor, also known as the acceleration constant, c1 mainly controls the extent to

which particles learn from their own historical optimal positions, while c2 mainly controls the extent to
which particles learn from the global optimal position of the group.

r1,r2: Random numbers, typically within the range of [0, 1], are used to increase the randomness of the
search.

Pid: The historical optimal position of particle i in dimension d.
Pgd: The global optimal position of the group in dimension d.
xid

k: The position of particle i in dimension d during the kth iteration.
Location update formula:  
It indicates that particles update their positions based on the updated velocities.
For complex issues like the relationship between wear depth and multiple factors, PSO can search for

the optimal solution in a multi-dimensional space, finding the best combination of factors such as v(x,y)
and a. This allows the wear depth model d1(x,y) to more accurately reflect reality and optimize the
pedestrian flow model n(x,y). In archaeology, PSO helps archaeologists infer information from stair wear,
such as usage frequency, walking direction preferences, and pedestrian flow. This provides a scientific
basis for understanding ancient buildings and their historical and cultural context.

3.  Modeling applications and problem solving

3.1.  Research on step wear direction

3.1.1. Step usage frequency

Regarding the frequency of stair usage, we incorporate it into the wear depth model. Suppose we have a
set of data on the stairs. To simplify the calculation, we assume that we only consider the situation at a
specific location (x0,y0) on the stairs, and assume that the pedestrian flow n(x0,y0) is a constant 10

d1(x, y) = a × v(x, y) × f(x, y) × n(x, y) + e(x, y)

vk+1
id = w × vkid + c1 × r1 × (pid − xk

id) + c2 × r2 × (pgd − xk
id)

xk+1
id = xk

id + vk+1
id



Proceedings	of	the	3rd	International	Conference	on	Functional	Materials	and	Civil	Engineering
DOI:	10.54254/2755-2721/2025.24448

7

(people/unit time), and the wear resistance coefficient of the material (the unit is set according to the
actual situation, assumed to be wear depth unit / (usage frequency unit × directional relationship unit ×
pedestrian flow unit)).

Suppose we measure the wear depth d1(x0,y0) at this position (unit assumed to be centimeters).
According to the wear depth model formula:

We set the directional relationship v(x0,y0)=0.8 (assumed to be a dimensionless proportionality
coefficient, indicating the degree of directional preference). Substituting the known data into the wear
depth model gives:

Assuming the error e(x0,y0)=0(in an ideal situation, the error influence is not considered for the time
being to facilitate the calculation of the usage frequency), the result can be obtained:

The calculation for minimizing the loss function is as follows. Suppose we have multiple sets of
measurement data. Let the number of measurement data points be m. For the i-th data point, the actual
wear depth is d1i(x0,y0), and the wear depth calculated through the model is

If we choose the mean squared error (MSE) as the loss function L,

To minimize the value of the loss function L with respect to f(x0,y0), we take the derivative of L with
respect to f(x0,y0) and set it equal to 0.

Solving this equation can yield the value of f(x0,y0) that minimizes the loss function. However, this
equation is generally nonlinear and may require numerical methods (such as iterative methods) for its
solution. The value of the step usage frequency f(x0,y0) obtained by minimizing the mean square error
loss function in the end is:

To further demonstrate the data before and after optimization, we have plotted a scatter plot for
observation. The image is shown in Figure 2.

 .d1(x, y) = a ⋅ v(x, y) × f(x, y) × n(x, y) + e(x, y)

 .0.5 = 0.01 × 0.8 × f(x0, y0) × 10 + e(x0, y0)

f(x0, y0) = 6.25(time/unit time)

d̂1i(x0, y0) = a × v(x0, y0) × f(x0, y0) × n(x0, y0)

L = 1
m
∑m

i=1[d1i(x0, y0)− ˆ
d1i(x0, y0)]2

f(x0, y0) = 6.05(time/unit time)
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Figure 2: Graph of Usage Frequency vs Wear Depth

From the image, we can roughly observe that the influence weight of f(x0,y0)=6.25 on the wear depth
is relatively large. In fact, after the error reduction calculation, the influence weight of f(x0,y0)=6.05 on
the wear depth will be even greater. Therefore, the above calculation results can be verified.

3.1.2. Whether wear is consistent with available information

We have the actual wear data of 5 groups of stair steps and the predicted wear data obtained through the
step wear model based on the existing information. At the same time, the threshold T = 1.5 is set to
determine whether they are consistent. The data is shown in the following table 1:

Table 1: Step Wear Data

Step number 1 2 3 4 5

Actual wear value 8.2 10.1 6.8 9.5 11.3
Predicted wear value 7.5 12.0 7.2 8.9 13.2

For each set of data, we calculate the absolute value  of the difference between the actual
wear value and the predicted wear value, and then determine xibased on the comparison result of this
value with the threshold (xi is a 0-1 variable, indicating whether the wear condition of the i-th set of data
is consistent with the existing information). Due to the large amount of data, we select one set of data for
demonstration, and its calculation process is as follows:

Calculate the absolute value of the difference.:   =|8.2-7.5|= 0.7
Compare with the threshold value: since 0.7≤1.5,then  =1.
The calculation results show that the wear conditions of steps 1, 3, and 4 are consistent with the

existing information (x1 = x3 = x4 = 1), while those of steps 2 and 5 are inconsistent with the existing
information (x2 = x5 = 0). To further verify, we calculate the mean square error for the above five sets of
data and conduct a residual analysis. The calculation process is as follows:

Calculate the residual for each sample.  ,
Calculate the square of each residual.   ,
Calculate the mean square error MSE:  .
From the perspective of measurement accuracy for stair wear, if the measuring tool has a precision of

one decimal place , an MSE of 1.646 is relatively large. This is because the square root of MSE,

wi − ŵi∣ ∣wi − ŵi∣ ∣x1

ei = wi − ŵ i

e2
i

MSE = 1
5

× 8.23 = 1.646
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approximately 1.28, exceeds the tool's precision range. This suggests that the model's prediction accuracy
needs improvement and may not be acceptable.

If the measurement accuracy itself is relatively low, for instance, the measurement error is ±1 or even
larger, then MSE = 1.646 might be acceptable, indicating that the error of the model's prediction is at a
relatively comparable level to the error of the measurement itself, and the model has a certain degree of
rationality.

3.1.3. Step age estimation

We have collected research results related to historical verification and radiocarbon dating, and have
obtained the following comparative data, the results are shown in Table 2.

Table 2: Historical verification and radiocarbon dating related data

Data type
Year
range

(years)

The overlap degree with
material wear estimation

The degree of overlap with
historical literature

speculation

The degree of overlap
with radiocarbon dating

Estimation of material
properties and wear

characteristics
150 - 200 - 30%(The overlapping period

is from 160 to 180 years.)

40%(The overlapping
period was from 165 to

185.)

Historical literature data
inference 140 - 220

30%(The overlapping
period is from 160 to 180

years.)
- 25%(The overlapping

period is 150 - 170 years)

Radiocarbon dating 160 - 190
40%(The overlapping

period was from 165 to
185.)

25%(The overlapping period
is 150 - 170 years) -

Reliability analysis was conducted by comparing two sets of data: historical verification and
radiocarbon dating. The natural wear rate could be obtained through material properties (wood, stone)
and wear characteristics (friction coefficient, durability). The data was linearly fitted using MATLAB,
and the following results were obtained. The results are shown in Figure 3.

Figure 3: Linear fitting graph of wear and radiocarbon dating

The fitting curve shows the trend of the linear relationship between the estimated age based on wear
and the radiocarbon dating age. The data points are not closely clustered around the fitting curve,
indicating that there is not a strong linear correlation between the two, that is, the estimated age based on
material wear and the radiocarbon dating age are not completely consistent to a certain extent.



Proceedings	of	the	3rd	International	Conference	on	Functional	Materials	and	Civil	Engineering
DOI:	10.54254/2755-2721/2025.24448

10

3.1.4. Repairs and innovations

We have collected research results related to X-ray analysis and infrared imaging, and quantified their
data. The calculation process for X-ray analysis is as follows: For each X-ray image of the staircase
samples, it is divided into n×n small regions (here n=100), and the average gray value    of each small
region is calculated, where i and j respectively represent the row and column indices of the small region
in the image.

Calculate the average gray level of the entire image:  

Calculate the standard deviation of the grayscale values:  

The standard deviation σ is used to measure the dispersion of the gray values, that is, the uniformity of
wear. The smaller the σ value, the more uniform the wear is. The infrared imaging calculation process is
as follows: Extract the temperature data of each stair sample surface from the infrared thermal imaging
image. Similarly, divide the image into m×m small areas (here m=50), and record the temperature value 

 of each small area.
Calculate the average temperature of the entire image:  

Calculate the standard deviation of the temperature:  

The smaller the   value is, the more uniform the temperature distribution is, which means the surface
wear is more uniform.

Combining the results from both analysis methods, we find that the new staircase has smaller standard
deviations in X-ray gray values and infrared temperature readings compared to the old staircase, which
shows larger deviations in both metrics.In conclusion, the new staircase appears intact with no significant
signs of repair or renovation, aside from minor surface treatments. In contrast, the old staircase exhibits
various signs of repair and renovation, including material replacement, structural reinforcement, and
surface restoration.

3.1.5. Identify the source of materials

Let's assume that there are m1 types of elements in elemental analysis, m2 isotopes in isotope analysis,
m3 tree-ring data points in tree-ring analysis, and m4 texture feature parameters in texture analysis. Then,
the calculation formula for the loss index I is:

Where z1j is the jth influencing factor data of the standardized staircase material sample, and z2j is the
jth influencing factor data of the standardized suspected original source material sample.

When the loss index I is small (e.g., I < 0.1), it indicates that the chemical composition and texture of
the staircase material closely match those of the suspected original source, with consistent wear. When I
is large (e.g., I > 0.5), significant differences exist between the two. For intermediate values (0.1 ≤ I ≤
0.5), the situation is more complex and uncertain.We demonstrate this using data from a stone staircase
sample and a suspected original quarry stone sample. The results are shown in Table 3.

Gij

Gavg = 1
n2 ∑

n
i=1 ∑

n
j=1 Gij

σ = √ 1
n2 ∑

n
i=1 ∑

n
j=1(Gij − Gavg)

2

Tij

Tavg = 1
m2 ∑

m
i=1 ∑

m
j=1 Tij

δ = √ 1
m2 ∑

m
i=1 ∑

m
j=1(Tij − Tavg)

2

δ

I = √ 1
m1+m2+m3+m4

∑m1+m2+m3+m4

j=1 (z1j − z2j)
2



Proceedings	of	the	3rd	International	Conference	on	Functional	Materials	and	Civil	Engineering
DOI:	10.54254/2755-2721/2025.24448

11

Table 3: The quoted sample data

Influencing factors Staircase sample value Quarry sample value

Element 1(%) 10 11
Element 2(%) 20 22
Element 3(%) 5 4
Isotope 1(‰) 15 16
Isotope 2(‰) 25 24

Texture features 1 0.5 0.6
Texture features 2 0.3 0.4
Texture features 3 0.2 0.1

After calculation, the loss index I = 0.2 can be obtained, which indicates that there is a certain
difference between the two, but there is still a possibility that the stone of the staircase comes from this
quarry.

3.2.  The impact of changes in pedestrian flow

3.2.1. People flow preference direction

To investigate whether people using stairs tend to favor a specific walking direction, we incorporated it
into the human flow model n(x, y, t). For simplicity, we assume that the human flow is only related to the
position x of the stairs (assuming the stairs are one-dimensional, representing the position from one end
to the other) and time t, and the directional relationship v(x, t) is related to n(x, t).

We define the preference direction coefficient P to measure people's walking direction preference on
the stairs. Suppose that within time t, the number of people moving from one end of the stairs (set as the
x=0 end) to the other end (set as the x=L end) is Nforward (t), and the number of people moving in the
opposite direction is Nforward (t), then the preference direction coefficient P is:

To calculate Nforward (t) and Nbackward (t) , we integrate the human flow model n(x,t) in the
corresponding direction. Assuming that the distribution of human flow on the staircase is continuous, and
the movement direction is positive when it is the same as the positive direction of the x-axis.

Here,    is the Heaviside function, defined as:

Suppose the human flow model is   (where T is the time period,
assume T = 1 unit of time, and L is the length of the staircase, assume L = 10 units of length), and the
directional relationship is   . First, calculate Nforward (t):

P(t) =
Nforward(t)−Nbackward(t)

Nforward(t)+Nbackward(t)

Nforward(t) = ∫
L

0 n(x, t) ⋅ H(v(x, t))dx

Nbackward(t) = ∫
L

0 n(x, t) ⋅ H(−v(x, t))dx

H(u)

If u  0,   =1;else    =0≥ H(u) H(u)

n(x, t) = 10 + 2sin( πx
L )sin( πt

T )

v(x, t) = 0.5 + 0.3cos( πx
L )cos( πt

T )
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For the calculation similar to Nbackward (t). Then calculate P(t).
For instance, at t = 0.5, calculate through numerical integration (such as using Simpson's rule):

where h =   , N is the number of divisions of the integral interval (assuming N = 100),   

Calculate Nbackward (t) in the same way and finally obtain P(0.5).
The preference direction coefficient P represents the degree to which people favor a specific direction

when walking. When P = 0.5, it indicates no significant directional preference in the studied scenario
based on the pedestrian flow model. For example, in stairway scenarios, the flow of people going up and
down is roughly equal, or the likelihood of walking left or right is the same. Both unidirectional and
bidirectional movements are possible at different times and positions, with no direction being
significantly favored. To visualize this variation, we used MATLAB to create a heatmap, as shown in the
following figure 4:

Figure 4: Thermal Imaging Spectrum Chart

From the above image, we can clearly verify the uncertainty of the preference direction. To further
test, we conducted a Spearman analysis on the referenced parameter data using SPSS, and the results are
as shown in the following figure 5:

Nforward(t) = ∫
10

0 (10 + 2sin( πx
10 )sin( πt

1 ) ⋅ H(0.5 + 0.3( πx
10 )cos( πt

1 )dx

Nbackward(0.5) ≈ ∑N−1
i=0

h
3 [f(xi) + 4f(xi+1) + f(xx+2)] ⋅ H(0.5 + 0.3cos( πxi

10 )cos( π×0.5
1 ))

L
H xi = i ⋅ h

 .f(x) = 10 + 2sin( πx
10
)sin( π×0.5

1
)
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Figure 5: Results of the experiment

From the analysis of the data in the graph, it can be seen that the correlation coefficients between
different factors vary significantly, further verifying the randomness presented in the preference direction.

3.2.2. Predict the number of people using the steps

By integrating the research achievements of LWR traffic flow and queuing theory, we can obtain the
following set data, The results are shown in Table 4.

Table 4: The obtained data

Parameter widt
h

average
speed

Traffic flow
density

Queue
length

Maximum queue
length

Queueing
time

Average queuing
time

Symbol w v p l. lmax tg tavg

numerical
value 2 0.5 2 1 5 10 20

Suppose the function f(Ain,Aout)=0.8 related to the entrance and exit factors (derived through a
comprehensive assessment of the size, quantity, and traffic capacity of the entrances and exits, etc.) is
based on the human flow model :

We compute that   . Then,we have  
 . Substitute the above results into the formula of the pedestrian flow model.

Suppose the observation time is T = 10 seconds, then the number of people using the stairs
simultaneously during this period is approximately:

  .
This means that approximately 0.5277 people pass through the staircase every second. Over a 10-

second observation period, about 5 people use the staircase simultaneously. Given this result, it is
unlikely that people are ascending in pairs (which would be in multiples of 2), and more likely that they
are going up one after another. However, this is a speculation based on the current model and data; actual
conditions may vary due to various factors.

 .n x, y = w⋅v⋅ρ

1+
lq

lmax

−
tq
tavg

inout

⎛

⎝

⎞

⎠

1 − e
−

tq

tavg = 1 − e− 10
20 = 1 − e−0.5 ≈ 1 − 0.6065 = 0.3935

w ⋅ v ⋅ ρ = 2 × 0.5 × 2 = 2

n = n(x, y) × T = 0.5277 × 10 ≈ 5
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3.2.3. Number of users per day

We obtained user data at different times of the day from surveillance cameras[3], access control systems,
and pressure sensors. Suppose there are m data points: (t1, n1), (t2, n2), ..., (tm, nm). We use Mean
Squared Error (MSE) to measure the difference between predicted values and actual data. For each time
point t, if the model's predicted value is:

then the Mean Squared Error is:

Then, the PSO (Particle Swarm Optimization) was carried out. The maximum number of iterations
was set, and after optimization, the following results were obtained. The results are shown in Table 5.

Table 5: The results obtained from optimization

Time(hour) 0 0.25 0.5 ... 23.5 23.75

5 6 8 ... 4 3

3 4 5 ... 3 2

2 3 4 ... 2 1

From the result data, we can determine the peak and trough times for stair usage in a day, such as 8
a.m. (peak) and 10 p.m. (trough). The sine wave's fluctuation amplitude shows significant variation in the
number of people at different times, indicating periods with large crowds in short intervals. Additionally,
the data distribution reveals that usage is relatively low from midnight to morning, showing a prolonged
period of low activity.

In addition, to make the data results more specific, we used MATLAB to perform a linear fit on the
trend of the number of people using the stairs in a day, the results are shown in Figure 6.

Figure 6: Trend of the Number of People Using the Stairs in a Day

 ,n̂(ti) = Asin(wti + ϕ) + B

E(A,ϕ,B) = 1
m
∑m

i=1[ni − (Asin(wti + ϕ) + B)]2

n(x1, y1, t)

n(x2, y2, t)

n(x3, y3, t)
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This image demonstrates how the PSO (Particle Swarm Optimization) algorithm[5] is used to optimize
the parameters of a sine wave periodic model to fit the actual data of the number of users. Eventually, the
actual data and the fitted curve are plotted, visually presenting the trend of the number of people using
the stairs throughout the day.

4.  Conclusion

The comprehensive analysis of the wear and tear of stairs, the flow of people and related factors is a very
complex issue. Up to now, there are no accurate research results and comprehensive and detailed
literature records on this issue. To give a satisfactory explanation of its inherent laws, more time and
effort may be needed. We hope that the stair wear model, the flow of people model and the PSO particle
swarm optimization model we have constructed can provide some help for the practical applications such
as the design, maintenance and personnel flow management of stairs, and make some contributions to the
research of ancient buildings. At the same time, we also hope that readers can give us some suggestions
for improving the model.
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