Review on Biological-based Hydrogels for Advanced Applications
Research Article
Open Access
CC BY

Review on Biological-based Hydrogels for Advanced Applications

Yutao Zhang 1*
1 National University of Singapore
*Corresponding author: e1373388@u.nus.edu
Published on 27 June 2025
Journal Cover
ACE Vol.171
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-219-5
ISBN (Online): 978-1-80590-220-1
Download Cover

Abstract

Bio-based hydrogels, derived from natural materials such as chitosan, alginate, gelatin, and collagen, have garnered significant attention for their outstanding biocompatibility and ability to mimic natural tissues. This review examines commonly used preparation methods, including physical, chemical and hybrid cross-linking, along with their primary components, such as polysaccharides and proteins. Owing to their flexibility and responsiveness, these hydrogels are widely used in areas such as soft robotics, cancer therapy and biosensing. However, despite promising advancements, significant challenges persist, particularly regarding their limited strength and stability. Future research should aim to enhance the performance and reliability of these materials to support their integration into complex medical and engineering systems.

Keywords:

Bio-based hydrogels, Biocompatibility, Cross-linking methods, Polysaccharides and proteins, Biomedical applications

View PDF
Zhang,Y. (2025). Review on Biological-based Hydrogels for Advanced Applications. Applied and Computational Engineering,171,21-32.

References

[1]. Pita-López, M. L. , Fletes-Vargas, G. , Espinosa-Andrews, H. , & Rodríguez-Rodríguez, R. (2021). Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal, 145, p. 110176, Feb. 2021, doi: https://doi. org/10. 1016/j. eurpolymj. 2020. 110176

[2]. Yang, J. , Chen, Y. , Zhao, L. , Zhang, J. , & Luo, H. (2022). Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. Polymer Reviews, 63(3), pp. 574–612, Oct. 2022, doi: https://doi. org/10. 1080/15583724. 2022. 2137525

[3]. Jiang, P. , Lin, P. , Yang, C. , Qin, H. , Wang, X. , & Zhou, F. (2020). 3D Printing of Dual-Physical Cross-linking Hydrogel with Ultrahigh Strength and Toughness. Chemistry of Materials, 32(23), pp. 9983–9995, Nov. 2020, doi: https://doi. org/10. 1021/acs. chemmater. 0c02941

[4]. Tang, L. , et al. (2019) . Double-Network Physical Cross-Linking Strategy To Promote Bulk Mechanical and Surface Adhesive Properties of Hydrogels. Macromolecules, 52(24), pp. 9512–9525, Dec. 2019, doi: https://doi. org/10. 1021/acs. macromol. 9b01686

[5]. Muir, V. G. , & Burdick, J. A. (2020). Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 121(18), pp. 10908–10949, Dec. 2020, doi: https://doi. org/10. 1021/acs. chemrev. 0c00923

[6]. Echalier, C. , Valot, L. , Martinez, J. , Mehdi, A. , & Subra, G. (2019). Chemical cross-linking methods for cell encapsulation in hydrogels. Materials Today Communications, 20, p. 100536, Sep. 2019, doi: https://doi. org/10. 1016/j. mtcomm. 2019. 05. 012

[7]. Rebers, L. , et al. (2021). Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Scientific Reports, 11(1), p. 3256, Feb. 2021, doi: https://doi. org/10. 1038/s41598-021-82393-z

[8]. Annabi, N. , et al. (2013). 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 26(1), pp. 85–124, Nov. 2013, doi: https://doi. org/10. 1002/adma. 201303233

[9]. Zhao, D. , Huang, J. , Zhong, Y. , Li, K. , Zhang, L. , and Cai, J. (2016). High-Strength and High-Toughness Double-Cross-Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Cross-Linking. Advanced Functional Materials, 26(34), pp. 6279–6287, Jul. 2016, doi: https://doi. org/10. 1002/adfm. 201601645

[10]. Xu, J. , Liu, X. , Ren, X. , & Gao, G. (2018). The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. European Polymer Journal, 100, pp. 86–95, Mar. 2018, doi: https://doi. org/10. 1016/j. eurpolymj. 2018. 01. 020

[11]. Bartnikowski, M. , Wellard, R. , Woodruff, M. , and Klein, T. (2015). Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking. Polymers, 7(12), pp. 2650–2669, Dec. 2015, doi: https://doi. org/10. 3390/polym7121539

[12]. Porwal, S. , Sridhar, S. B. , Talath, S. , Wali, A. F. , Warsi, M. H. , & Malviya, R. (2024). 3D printable sustainable hydrogel formulations for tissue engineering applications. Journal of Drug Delivery Science and Technology, 101, p. 106308, Oct. 2024, doi: https://doi. org/10. 1016/j. jddst. 2024. 106308.

[13]. Li, Z. , Zhou, Y. , Li, T. , Zhang, J. , & Tian, H. (2021). Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW, 3(2), p. 20200112, Aug. 2021, doi: https://doi. org/10. 1002/viw. 20200112

[14]. Zhang, A. , et al. (2021). 3D printing hydrogels for actuators: A review. Chinese Chemical Letters, 32(10), pp. 2923–2932, Oct. 2021, doi: https://doi. org/10. 1016/j. cclet. 2021. 03. 073

[15]. Appel, E. A. , Tibbitt, M. W. , Webber, M. J. , Mattix, B. A. , Veiseh, O. , & Langer, R. (2015). Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature Communications, 6(1), Feb. 2015, doi: https://doi. org/10. 1038/ncomms7295

[16]. Catoira, M. C. , Fusaro, L. , Di Francesco, D. , Ramella, M. , & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 30(10), Oct. 2019, doi: https://doi. org/10. 1007/s10856-019-6318-7

[17]. Li, Z. , & Lin, Z. (2021). Recent advances in polysaccharide‐based hydrogels for synthesis and applications. Aggregate, Jan. 2021, doi: https://doi. org/10. 1002/agt2. 21

[18]. Lee, K. Y. , & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), pp. 106–126, Jan. 2012, doi: https://doi. org/10. 1016/j. progpolymsci. 2011. 06. 003

[19]. Augst, A. D. , Kong, H. J. , & Mooney, D. J. (2006). Alginate Hydrogels as Biomaterials. Macromolecular Bioscience, 6(8), pp. 623–633, Aug. 2006, doi: https://doi. org/10. 1002/mabi. 200600069

[20]. Bidarra, S. J. , Barrias, C. C. , & Granja, P. L. (2014). Injectable alginate hydrogels for cell delivery in tissue engineering. Acta biomaterialia, 10(4), pp. 1646–62, 2014, doi: https://doi. org/10. 1016/j. actbio. 2013. 12. 006

[21]. Thakur, S. , Sharma, B. , Verma, A. , Chaudhary, J. , Tamulevicius, S. , & Thakur, V. K. (2018). Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of Cleaner Production, 198, pp. 143–159, Oct. 2018, doi: https://doi. org/10. 1016/j. jclepro. 2018. 06. 259

[22]. Islam, M. M. , Shahruzzaman, M. , Biswas, S. , Nurus Sakib, M. , & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1), pp. 164–183, Mar. 2020, doi: https://doi. org/10. 1016/j. bioactmat. 2020. 01. 012

[23]. Fu, J. , Yang, F. , & Guo, Z. (2018). The chitosan hydrogels: from structure to function. New Journal of Chemistry, 42(21), pp. 17162–17180, 2018, doi: https://doi. org/10. 1039/c8nj03482f

[24]. Shariatinia, Z. , & Jalali, A. M. (2018). Chitosan-based hydrogels: Preparation, properties and applications. International Journal of Biological Macromolecules, 115, pp. 194–220, Aug. 2018, doi: https://doi. org/10. 1016/j. ijbiomac. 2018. 04. 034

[25]. Yang, J. , et al. (2021). Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends in Food Science & Technology, 110, pp. 822–832, Apr. 2021, doi: https://doi. org/10. 1016/j. tifs. 2021. 02. 032

[26]. Saravanakumar, K. et al. (2022). Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. International Journal of Biological Macromolecules, 222, pp. 2744–2760, Dec. 2022, doi: https://doi. org/10. 1016/j. ijbiomac. 2022. 10. 055

[27]. Luo, Z. , Wang, Y. , Li, J. , Wang, J. , Yu, Y. , & Zhao, Y. (2023). Tailoring Hyaluronic Acid Hydrogels for Biomedical Applications. Advanced Functional Materials, 33(49), Sep. 2023, doi: https://doi. org/10. 1002/adfm. 202306554

[28]. Pérez, L. A. , Hernández, R. , Alonso, J. M. , Pérez-González, R. , & Sáez-Martínez, V. (2021). Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines, 9(9), p. 1113, Aug. 2021, doi: https://doi. org/10. 3390/biomedicines9091113

[29]. Davari, N. , et al. (2022). Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers, 14(5), p. 986, Feb. 2022, doi: https://doi. org/10. 3390/polym14050986

[30]. She, J. , et al. (2025). Recent advances in collagen-based hydrogels: Materials, preparation and applications. Reactive and Functional Polymers, 207, p. 106136, Feb. 2025, doi: https://doi. org/10. 1016/j. reactfunctpolym. 2024. 106136

[31]. Yang, X. , et al. (2025). Collagen-based hydrogel sol-gel phase transition mechanism and their applications. Advances in Colloid and Interface Science, 340, p. 103456, Feb. 2025, doi: https://doi. org/10. 1016/j. cis. 2025. 103456

[32]. Benival, D. , et al. (2023). Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels, 9(8), pp. 643–643, Aug. 2023, doi: https://doi. org/10. 3390/gels9080643

[33]. Wang, Y. , et al. (2024). A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing. Scientific Reports, 14(1), Feb. 2024, doi: https://doi. org/10. 1038/s41598-024-54853-9

[34]. Andreazza, R. , Morales, A. , Pieniz, S. , & Labidi, J. (2023). Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers, 15(4), p. 1026, Jan. 2023, doi: https://doi. org/10. 3390/polym15041026

[35]. Mushtaq, F. , et al. (2022). Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. International Journal of Biological Macromolecules, 218, pp. 601–633, Oct. 2022, doi: https://doi. org/10. 1016/j. ijbiomac. 2022. 07. 168

[36]. Zheng, H. , & Zuo, B. (2021). Functional silk fibroin hydrogels: preparation, properties and applications. Journal of Materials Chemistry B, 2021, doi: https://doi. org/10. 1039/d0tb02099k

[37]. Kim, S. H. , et al. (2021). 3D bioprinted silk fibroin hydrogels for tissue engineering. Nature Protocols, 16(12), pp. 5484–5532, Dec. 2021, doi: https://doi. org/10. 1038/s41596-021-00622-1

[38]. Zhang, H. , Xu, D. , Zhang, Y. , Li, M. , & Chai, R. (2022). Silk fibroin hydrogels for biomedical applications. Smart Medicine, 1(1), Dec. 2022, doi: https://doi. org/10. 1002/smmd. 20220011

[39]. Cao, H. , Duan, L. , Zhang, Y. , Cao, J. , & Zhang, K. (2021). Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 6(1), pp. 1–31, Dec. 2021, doi: https://doi. org/10. 1038/s41392-021-00830-x.

[40]. Cianchetti, M. , Laschi, C. , Menciassi, A. , & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), pp. 143–153, May 2018, doi: https://doi. org/10. 1038/s41578-018-0022-y

[41]. Yuk, H. , Zhang, T. , Parada, G. A. , Liu, X. , & Zhao, X. (2016). Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature Communications, 7(1), Jun. 2016, doi: https://doi. org/10. 1038/ncomms12028

[42]. Shin, Y. , Lee, H. S. , Jeong, H. , & Kim, D. -H. (2024). Recent advances in conductive hydrogels for soft biointegrated electronics: Materials, properties, and device applications. Wearable Electronics, vol. 1, pp. 255–280, Dec. 2024, doi: https://doi. org/10. 1016/j. wees. 2024. 10. 004

[43]. Park, C. S. , Kang, Y. -W. , Na, H. , & Sun, J. -Y. (2024). Hydrogels for bioinspired soft robots. Progress in Polymer Science, pp. 101791–101791, Jan. 2024, doi: https://doi. org/10. 1016/j. progpolymsci. 2024. 101791

[44]. Zhao, X. (2014). Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter, 10(5), pp. 672–687, 2014, doi: https://doi. org/10. 1039/c3sm52272e

[45]. Li, H. , Go, G. , Ko, S. Y. , Park, J. -O. , & Park, S. (2016). Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 25(2), p. 027001, Jan. 2016, doi: https://doi. org/10. 1088/0964-1726/25/2/027001

[46]. Huang, Y. , Yu, Q. , Su, C. , Jiang, J. , Chen, N. , & Shao, H. (2021). Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators, 10(11), p. 298, Nov. 2021, doi: https://doi. org/10. 3390/act10110298

[47]. Xie, Z. , Shen, J. , Sun, H. , Li, J. , & Wang, X. (2021). Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomedicine & Pharmacotherapy, 137, p. 111333, Feb. 2021, doi: https://doi. org/10. 1016/j. biopha. 2021. 111333

[48]. Chen, C. -H. , et al. (2018). Thermosensitive Injectable Hydrogel for Simultaneous Intraperitoneal Delivery of Doxorubicin and Prevention of Peritoneal Adhesion. International Journal of Molecular Sciences, 19(5), p. 1373, May 2018, doi: https://doi. org/10. 3390/ijms19051373

[49]. Tang, L. , Wang, L. , Yang, X. , Feng, Y. , Li, Y. , & Feng, W. (2021). Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Progress in Materials Science, 115, p. 100702, Jan. 2021, doi: https://doi. org/10. 1016/j. pmatsci. 2020. 100702

[50]. Cao, C. , et al. (2021). Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy. Nano Today, 39, p. 101165, Aug. 2021, doi: https://doi. org/10. 1016/j. nantod. 2021. 101165

[51]. Chao, Y. , Chen, Q. , & Liu, Z. (2019). Smart Injectable Hydrogels for Cancer Immunotherapy. Advanced Functional Materials, 30(2), p. 1902785, Aug. 2019, doi: https://doi. org/10. 1002/adfm. 201902785

[52]. Bae, J. , et al. (2020). Tailored hydrogels for biosensor applications. Journal of Industrial and Engineering Chemistry, 89, pp. 1–12, Sep. 2020, doi: https://doi. org/10. 1016/j. jiec. 2020. 05. 001

[53]. Mattheolabakis, G. , Milane, L. , Singh, A. , & Amiji, M. M. (2015). Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. Journal of Drug Targeting, 23(7–8), pp. 605–618, Sep. 2015, doi: https://doi. org/10. 3109/1061186x. 2015. 1052072

[54]. Amirthalingam, S. , & Rangasamy, J. (2021). Chitosan-Based Biosensor Fabrication and Biosensing Applications. Advances in Polymer Science, pp. 233–255, Jan. 2021, doi: https://doi. org/10. 1007/12_2021_85

[55]. Qureshi, A. , Gurbuz, Y. , & Niazi, J. H. (2012). Biosensors for cardiac biomarkers detection: A review. Sensors and Actuators B: Chemical, 171–172, pp. 62–76, Aug. 2012, doi: https://doi. org/10. 1016/j. snb. 2012. 05. 077

[56]. Zhang, L. (2022). Strong and Tough PAm/SA Hydrogel with Highly Strain Sensitivity. Journal of Renewable Materials, 10(2), pp. 415–430, doi: https://doi. org/10. 32604/jrm. 2022. 016650

[57]. Nagamine, K. , et al. (2019). Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad. Scientific Reports, 9(1), Jul. 2019, doi: https://doi. org/10. 1038/s41598-019-46611-z

[58]. Park, S. , et al. (2021). Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nature Communications, 12(1), p. 3435, Jun. 2021, doi: https://doi. org/10. 1038/s41467-021-23802-9

[59]. Ma, J. , et al. (2023). Hydrogel sensors for biomedical electronics. Chemical Engineering Journal, 481, pp. 148317–148317, Dec. 2023, doi: https://doi. org/10. 1016/j. cej. 2023. 148317

Cite this article

Zhang,Y. (2025). Review on Biological-based Hydrogels for Advanced Applications. Applied and Computational Engineering,171,21-32.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of the 3rd International Conference on Functional Materials and Civil Engineering

ISBN: 978-1-80590-219-5(Print) / 978-1-80590-220-1(Online)
Editor: Anil Fernando
Conference website: https://2025.conffmce.org/
Conference date: 24 October 2025
Series: Applied and Computational Engineering
Volume number: Vol.171
ISSN: 2755-2721(Print) / 2755-273X(Online)