References
[1]. Pita-López, M. L. , Fletes-Vargas, G. , Espinosa-Andrews, H. , & Rodríguez-Rodríguez, R. (2021). Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal, 145, p. 110176, Feb. 2021, doi: https://doi. org/10. 1016/j. eurpolymj. 2020. 110176
[2]. Yang, J. , Chen, Y. , Zhao, L. , Zhang, J. , & Luo, H. (2022). Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. Polymer Reviews, 63(3), pp. 574–612, Oct. 2022, doi: https://doi. org/10. 1080/15583724. 2022. 2137525
[3]. Jiang, P. , Lin, P. , Yang, C. , Qin, H. , Wang, X. , & Zhou, F. (2020). 3D Printing of Dual-Physical Cross-linking Hydrogel with Ultrahigh Strength and Toughness. Chemistry of Materials, 32(23), pp. 9983–9995, Nov. 2020, doi: https://doi. org/10. 1021/acs. chemmater. 0c02941
[4]. Tang, L. , et al. (2019) . Double-Network Physical Cross-Linking Strategy To Promote Bulk Mechanical and Surface Adhesive Properties of Hydrogels. Macromolecules, 52(24), pp. 9512–9525, Dec. 2019, doi: https://doi. org/10. 1021/acs. macromol. 9b01686
[5]. Muir, V. G. , & Burdick, J. A. (2020). Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 121(18), pp. 10908–10949, Dec. 2020, doi: https://doi. org/10. 1021/acs. chemrev. 0c00923
[6]. Echalier, C. , Valot, L. , Martinez, J. , Mehdi, A. , & Subra, G. (2019). Chemical cross-linking methods for cell encapsulation in hydrogels. Materials Today Communications, 20, p. 100536, Sep. 2019, doi: https://doi. org/10. 1016/j. mtcomm. 2019. 05. 012
[7]. Rebers, L. , et al. (2021). Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Scientific Reports, 11(1), p. 3256, Feb. 2021, doi: https://doi. org/10. 1038/s41598-021-82393-z
[8]. Annabi, N. , et al. (2013). 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 26(1), pp. 85–124, Nov. 2013, doi: https://doi. org/10. 1002/adma. 201303233
[9]. Zhao, D. , Huang, J. , Zhong, Y. , Li, K. , Zhang, L. , and Cai, J. (2016). High-Strength and High-Toughness Double-Cross-Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Cross-Linking. Advanced Functional Materials, 26(34), pp. 6279–6287, Jul. 2016, doi: https://doi. org/10. 1002/adfm. 201601645
[10]. Xu, J. , Liu, X. , Ren, X. , & Gao, G. (2018). The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. European Polymer Journal, 100, pp. 86–95, Mar. 2018, doi: https://doi. org/10. 1016/j. eurpolymj. 2018. 01. 020
[11]. Bartnikowski, M. , Wellard, R. , Woodruff, M. , and Klein, T. (2015). Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking. Polymers, 7(12), pp. 2650–2669, Dec. 2015, doi: https://doi. org/10. 3390/polym7121539
[12]. Porwal, S. , Sridhar, S. B. , Talath, S. , Wali, A. F. , Warsi, M. H. , & Malviya, R. (2024). 3D printable sustainable hydrogel formulations for tissue engineering applications. Journal of Drug Delivery Science and Technology, 101, p. 106308, Oct. 2024, doi: https://doi. org/10. 1016/j. jddst. 2024. 106308.
[13]. Li, Z. , Zhou, Y. , Li, T. , Zhang, J. , & Tian, H. (2021). Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW, 3(2), p. 20200112, Aug. 2021, doi: https://doi. org/10. 1002/viw. 20200112
[14]. Zhang, A. , et al. (2021). 3D printing hydrogels for actuators: A review. Chinese Chemical Letters, 32(10), pp. 2923–2932, Oct. 2021, doi: https://doi. org/10. 1016/j. cclet. 2021. 03. 073
[15]. Appel, E. A. , Tibbitt, M. W. , Webber, M. J. , Mattix, B. A. , Veiseh, O. , & Langer, R. (2015). Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature Communications, 6(1), Feb. 2015, doi: https://doi. org/10. 1038/ncomms7295
[16]. Catoira, M. C. , Fusaro, L. , Di Francesco, D. , Ramella, M. , & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 30(10), Oct. 2019, doi: https://doi. org/10. 1007/s10856-019-6318-7
[17]. Li, Z. , & Lin, Z. (2021). Recent advances in polysaccharide‐based hydrogels for synthesis and applications. Aggregate, Jan. 2021, doi: https://doi. org/10. 1002/agt2. 21
[18]. Lee, K. Y. , & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), pp. 106–126, Jan. 2012, doi: https://doi. org/10. 1016/j. progpolymsci. 2011. 06. 003
[19]. Augst, A. D. , Kong, H. J. , & Mooney, D. J. (2006). Alginate Hydrogels as Biomaterials. Macromolecular Bioscience, 6(8), pp. 623–633, Aug. 2006, doi: https://doi. org/10. 1002/mabi. 200600069
[20]. Bidarra, S. J. , Barrias, C. C. , & Granja, P. L. (2014). Injectable alginate hydrogels for cell delivery in tissue engineering. Acta biomaterialia, 10(4), pp. 1646–62, 2014, doi: https://doi. org/10. 1016/j. actbio. 2013. 12. 006
[21]. Thakur, S. , Sharma, B. , Verma, A. , Chaudhary, J. , Tamulevicius, S. , & Thakur, V. K. (2018). Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of Cleaner Production, 198, pp. 143–159, Oct. 2018, doi: https://doi. org/10. 1016/j. jclepro. 2018. 06. 259
[22]. Islam, M. M. , Shahruzzaman, M. , Biswas, S. , Nurus Sakib, M. , & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1), pp. 164–183, Mar. 2020, doi: https://doi. org/10. 1016/j. bioactmat. 2020. 01. 012
[23]. Fu, J. , Yang, F. , & Guo, Z. (2018). The chitosan hydrogels: from structure to function. New Journal of Chemistry, 42(21), pp. 17162–17180, 2018, doi: https://doi. org/10. 1039/c8nj03482f
[24]. Shariatinia, Z. , & Jalali, A. M. (2018). Chitosan-based hydrogels: Preparation, properties and applications. International Journal of Biological Macromolecules, 115, pp. 194–220, Aug. 2018, doi: https://doi. org/10. 1016/j. ijbiomac. 2018. 04. 034
[25]. Yang, J. , et al. (2021). Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends in Food Science & Technology, 110, pp. 822–832, Apr. 2021, doi: https://doi. org/10. 1016/j. tifs. 2021. 02. 032
[26]. Saravanakumar, K. et al. (2022). Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. International Journal of Biological Macromolecules, 222, pp. 2744–2760, Dec. 2022, doi: https://doi. org/10. 1016/j. ijbiomac. 2022. 10. 055
[27]. Luo, Z. , Wang, Y. , Li, J. , Wang, J. , Yu, Y. , & Zhao, Y. (2023). Tailoring Hyaluronic Acid Hydrogels for Biomedical Applications. Advanced Functional Materials, 33(49), Sep. 2023, doi: https://doi. org/10. 1002/adfm. 202306554
[28]. Pérez, L. A. , Hernández, R. , Alonso, J. M. , Pérez-González, R. , & Sáez-Martínez, V. (2021). Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines, 9(9), p. 1113, Aug. 2021, doi: https://doi. org/10. 3390/biomedicines9091113
[29]. Davari, N. , et al. (2022). Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers, 14(5), p. 986, Feb. 2022, doi: https://doi. org/10. 3390/polym14050986
[30]. She, J. , et al. (2025). Recent advances in collagen-based hydrogels: Materials, preparation and applications. Reactive and Functional Polymers, 207, p. 106136, Feb. 2025, doi: https://doi. org/10. 1016/j. reactfunctpolym. 2024. 106136
[31]. Yang, X. , et al. (2025). Collagen-based hydrogel sol-gel phase transition mechanism and their applications. Advances in Colloid and Interface Science, 340, p. 103456, Feb. 2025, doi: https://doi. org/10. 1016/j. cis. 2025. 103456
[32]. Benival, D. , et al. (2023). Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels, 9(8), pp. 643–643, Aug. 2023, doi: https://doi. org/10. 3390/gels9080643
[33]. Wang, Y. , et al. (2024). A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing. Scientific Reports, 14(1), Feb. 2024, doi: https://doi. org/10. 1038/s41598-024-54853-9
[34]. Andreazza, R. , Morales, A. , Pieniz, S. , & Labidi, J. (2023). Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers, 15(4), p. 1026, Jan. 2023, doi: https://doi. org/10. 3390/polym15041026
[35]. Mushtaq, F. , et al. (2022). Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. International Journal of Biological Macromolecules, 218, pp. 601–633, Oct. 2022, doi: https://doi. org/10. 1016/j. ijbiomac. 2022. 07. 168
[36]. Zheng, H. , & Zuo, B. (2021). Functional silk fibroin hydrogels: preparation, properties and applications. Journal of Materials Chemistry B, 2021, doi: https://doi. org/10. 1039/d0tb02099k
[37]. Kim, S. H. , et al. (2021). 3D bioprinted silk fibroin hydrogels for tissue engineering. Nature Protocols, 16(12), pp. 5484–5532, Dec. 2021, doi: https://doi. org/10. 1038/s41596-021-00622-1
[38]. Zhang, H. , Xu, D. , Zhang, Y. , Li, M. , & Chai, R. (2022). Silk fibroin hydrogels for biomedical applications. Smart Medicine, 1(1), Dec. 2022, doi: https://doi. org/10. 1002/smmd. 20220011
[39]. Cao, H. , Duan, L. , Zhang, Y. , Cao, J. , & Zhang, K. (2021). Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 6(1), pp. 1–31, Dec. 2021, doi: https://doi. org/10. 1038/s41392-021-00830-x.
[40]. Cianchetti, M. , Laschi, C. , Menciassi, A. , & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), pp. 143–153, May 2018, doi: https://doi. org/10. 1038/s41578-018-0022-y
[41]. Yuk, H. , Zhang, T. , Parada, G. A. , Liu, X. , & Zhao, X. (2016). Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature Communications, 7(1), Jun. 2016, doi: https://doi. org/10. 1038/ncomms12028
[42]. Shin, Y. , Lee, H. S. , Jeong, H. , & Kim, D. -H. (2024). Recent advances in conductive hydrogels for soft biointegrated electronics: Materials, properties, and device applications. Wearable Electronics, vol. 1, pp. 255–280, Dec. 2024, doi: https://doi. org/10. 1016/j. wees. 2024. 10. 004
[43]. Park, C. S. , Kang, Y. -W. , Na, H. , & Sun, J. -Y. (2024). Hydrogels for bioinspired soft robots. Progress in Polymer Science, pp. 101791–101791, Jan. 2024, doi: https://doi. org/10. 1016/j. progpolymsci. 2024. 101791
[44]. Zhao, X. (2014). Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter, 10(5), pp. 672–687, 2014, doi: https://doi. org/10. 1039/c3sm52272e
[45]. Li, H. , Go, G. , Ko, S. Y. , Park, J. -O. , & Park, S. (2016). Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 25(2), p. 027001, Jan. 2016, doi: https://doi. org/10. 1088/0964-1726/25/2/027001
[46]. Huang, Y. , Yu, Q. , Su, C. , Jiang, J. , Chen, N. , & Shao, H. (2021). Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators, 10(11), p. 298, Nov. 2021, doi: https://doi. org/10. 3390/act10110298
[47]. Xie, Z. , Shen, J. , Sun, H. , Li, J. , & Wang, X. (2021). Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomedicine & Pharmacotherapy, 137, p. 111333, Feb. 2021, doi: https://doi. org/10. 1016/j. biopha. 2021. 111333
[48]. Chen, C. -H. , et al. (2018). Thermosensitive Injectable Hydrogel for Simultaneous Intraperitoneal Delivery of Doxorubicin and Prevention of Peritoneal Adhesion. International Journal of Molecular Sciences, 19(5), p. 1373, May 2018, doi: https://doi. org/10. 3390/ijms19051373
[49]. Tang, L. , Wang, L. , Yang, X. , Feng, Y. , Li, Y. , & Feng, W. (2021). Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Progress in Materials Science, 115, p. 100702, Jan. 2021, doi: https://doi. org/10. 1016/j. pmatsci. 2020. 100702
[50]. Cao, C. , et al. (2021). Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy. Nano Today, 39, p. 101165, Aug. 2021, doi: https://doi. org/10. 1016/j. nantod. 2021. 101165
[51]. Chao, Y. , Chen, Q. , & Liu, Z. (2019). Smart Injectable Hydrogels for Cancer Immunotherapy. Advanced Functional Materials, 30(2), p. 1902785, Aug. 2019, doi: https://doi. org/10. 1002/adfm. 201902785
[52]. Bae, J. , et al. (2020). Tailored hydrogels for biosensor applications. Journal of Industrial and Engineering Chemistry, 89, pp. 1–12, Sep. 2020, doi: https://doi. org/10. 1016/j. jiec. 2020. 05. 001
[53]. Mattheolabakis, G. , Milane, L. , Singh, A. , & Amiji, M. M. (2015). Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. Journal of Drug Targeting, 23(7–8), pp. 605–618, Sep. 2015, doi: https://doi. org/10. 3109/1061186x. 2015. 1052072
[54]. Amirthalingam, S. , & Rangasamy, J. (2021). Chitosan-Based Biosensor Fabrication and Biosensing Applications. Advances in Polymer Science, pp. 233–255, Jan. 2021, doi: https://doi. org/10. 1007/12_2021_85
[55]. Qureshi, A. , Gurbuz, Y. , & Niazi, J. H. (2012). Biosensors for cardiac biomarkers detection: A review. Sensors and Actuators B: Chemical, 171–172, pp. 62–76, Aug. 2012, doi: https://doi. org/10. 1016/j. snb. 2012. 05. 077
[56]. Zhang, L. (2022). Strong and Tough PAm/SA Hydrogel with Highly Strain Sensitivity. Journal of Renewable Materials, 10(2), pp. 415–430, doi: https://doi. org/10. 32604/jrm. 2022. 016650
[57]. Nagamine, K. , et al. (2019). Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad. Scientific Reports, 9(1), Jul. 2019, doi: https://doi. org/10. 1038/s41598-019-46611-z
[58]. Park, S. , et al. (2021). Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nature Communications, 12(1), p. 3435, Jun. 2021, doi: https://doi. org/10. 1038/s41467-021-23802-9
[59]. Ma, J. , et al. (2023). Hydrogel sensors for biomedical electronics. Chemical Engineering Journal, 481, pp. 148317–148317, Dec. 2023, doi: https://doi. org/10. 1016/j. cej. 2023. 148317