References
[1]. Han, F.J., Wang, X.H., Qiao, J., et al. A review of artificial intelligence-based load forecasting in new power systems [J]. Proceedings of the CSEE, 2023, 43(22): 8569-8592. DOI:10.13334/j.0258-8013.pcsee.221560.
[2]. Habbak H, Mahmoud M, Metwally K, et al. Load forecasting techniques and their applications in smart grids[J]. Energies, 2023, 16(3): 1480.
[3]. Kondaiah, V.; Saravanan, B.; Sanjeevikumar, P.; Khan, B. A review on short-term load forecasting models for micro-grid application. J. Eng. 2022, 2022, 665– 689.
[4]. Ahmad, N.; Ghadi, Y.; Adnan, M.; Ali, M. Load forecasting techniques for power system: Research challenges and survey. *IEEE Access* 2022, 10, 71054–71090.
[5]. Paparoditis, E.; Sapatinas, T. Short-Term Load Forecasting: The Similar Shape Functional Time Series Predictor. IEEE Trans. Power Syst. 2013, 28, 3818– 3825.
[6]. Lei, S.; Sun, X.; Zhou, Q.; Zhang, X. Research on multivariate time series linear regression forecasting method for short-term load of electricity. Proc. CSEE 2006, 1, 27– 31.
[7]. Song, K.; Ha, S.; Park, J.W. Hybrid load forecasting method with analysis of temperature sensitivities. IEEE Trans. Power Syst. 2006, 21, 869– 876.
[8]. Alhamrouni, I.; Kahar, H.A.; Salem, M.; Swadi, M.; Zahroui, Y.; Kadhim, D.J.; Mohamed, F.A.; Nazari, M.A. A Comprehensive Review on the Role of Artificial Intelligence in Power System Stability, Control, and Protection: Insights and Future Directions. Appl. Sci. 2024, 14, 6214
[9]. PELKA P. Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods[J/OL]. Energies, 2023, 16(2): 827. DOI:10.3390/en16020827.
[10]. ROYAL E, BANDYOPADHYAY S, NEWMAN A, et al. A statistical framework for district energy long-term electric load forecasting[J]. Applied Energy, 2025, 384: 125445.
[11]. ZENG S, LIU C, ZHANG H, et al. Short-term load forecasting in power systems based on the Prophet-BO-XGBoost model[J]. Energies, 2025, 18(2): 227.
[12]. ÖZEN S, YAZICI A, ATALAY V. Hybrid deep learning models with data fusion approach for electricity load forecasting[J]. Expert Systems, 2025, 42(2): e13741. DOI: 10.1111/exsy.13741.
[13]. Fan C, Li G, Xiao L, Yi L, Nie S. An ISSA-TCN short-term urban power load forecasting model with error factor[J]. Physica Scripta, 2025, 100: 045222.
[14]. GUO W, LIU S, WENG L, et al. Power Grid Load Forecasting Using a CNN-LSTM Network Based on a Multi-Modal Attention Mechanism[J]. Applied Sciences, 2025, 15: 2435. DOI:10.3390/app15052435.
[15]. Song Shaojian and Li Bohan, Short-term forecasting method of photovoltaic power based on LSTM. Renewable Energy Resources, 2021, 39(5): 594– 602.
[16]. Masood, Z.; Gantassi, R.; Choi, Y. Enhancing Short-Term Electric Load Forecasting for Households Using Quantile LSTM and Clustering-Based Probabilistic Approach. IEEE Access 2024, 12, 77257– 77268.
[17]. Liu, Y.; Liang, Z.; Li, X. Enhancing Short-Term Power Load Forecasting for Industrial and Commercial Buildings: A Hybrid Approach Using TimeGAN, CNN, and LSTM. IEEE Open J. Ind. Electron. Soc. 2023, 4, 451– 462.
[18]. Xie, T.; Zhang, Y.; Zhang, G.; Zhang, K.; Li, H.; He, X. Research on electric vehicle load forecasting considering regional special event characteristics. Front. Energy Res. 2024, 12, 1341246.