Wearable Devices in Healthcare: Technological Advancements, Clinical Applications, and Future Horizons
Research Article
Open Access
CC BY

Wearable Devices in Healthcare: Technological Advancements, Clinical Applications, and Future Horizons

Siyuan Wang 1*
1 Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
*Corresponding author: 2021190501003@std.uestc.edu.cn
Published on 30 May 2025
Volume Cover
ACE Vol.169
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-209-6
ISBN (Online): 978-1-80590-210-2
Download Cover

Abstract

This article provides a comprehensive review of the development of wearable devices in the field of healthcare. Key technologies such as sensor technology (e.g. electrochemistry, optics, etc.), micro-electro-mechanical systems (MEMS), flexible electronics, and material innovation are described in detail, power and energy management strategies, signal processing and data analysis methods are discussed. The clinical applications of wearable devices in diabetes management, cardiovascular disease monitoring and sleep monitoring are discussed, and their effectiveness and challenges are assessed. In addition, existing technical, clinical, and market challenges are analyzed, and future trends such as multimodal sensor fusion, intelligence, miniaturization, and integration with emerging technologies are predicted. Overall, this paper presents the current status of wearable devices in the field of healthcare in an all-round way, and provides ideas for subsequent research and development.

Keywords:

wearable devices, healthcare, sensor technology, MEMS, flexible electronics, energy management, clinical applications, future trends

View PDF
Wang,S. (2025). Wearable Devices in Healthcare: Technological Advancements, Clinical Applications, and Future Horizons. Applied and Computational Engineering,169,11-24.

References

[1]. T. R. Ray, J. Choi, A. J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, R. Ghaffari, and J. A. Rogers, "Bio-Integrated Wearable Systems: A Comprehensive Review," Chemical Reviews, vol. 119, no. 1, pp. 546-653, 2019, doi: 10.1021/acs.chemrev.8b00573.

[2]. C. Miozzi, S. Amendola, A. Bergamini and G. Marrocco, "Reliability of a re-usable wireless Epidermal temperature sensor in real conditions," 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, Netherlands, 2017, pp. 95-98, doi: 10.1109/BSN.2017.7936016.

[3]. Min, J., Sempionatto, J.R., Teymourian, H., Wang, J., Gao, W., Wearable electrochemical biosensors in North America, Biosensors and Bioelectronics (2020), doi: https://doi.org/10.1016/j.bios.2020.112750.

[4]. E. Fontana, N. Panunzio, F. Montecchia and G. Marrocco, "Two-channel Epidermal RFID Sensor for the Analysis of Nasal Respiratory Flow," 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022, pp. 1-5, doi: 10.23919/EuCAP53622.2022.9769683.

[5]. W. Dai, A. Kankipati, X. Yu, B. Mahajan, H. Pan and X. Huang, "Epidermal wireless sensors on releasable films for biophysical signal measurement on facial areas," 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 2017, pp. 347-350, doi: 10.1109/TRANSDUCERS.2017.7994059.

[6]. S. M. Kani, R. J. H. Marteijn, E. Pelssers and J. D. Toonder, "Wearable sweat sensing device determining sweat rate per gland," 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Korea, Republic of, 2023, pp. 1-6, doi: 10.1109/MeMeA57477.2023.10171867.

[7]. X. Yin, E. Peri, E. Pelssers, J. D. Toonder and M. Mischi, "Estimation of blood glucose levels by sweat sensing based on biophysical modeling of glucose transport," 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Korea, Republic of, 2023, pp. 1-5, doi: 10.1109/MeMeA57477.2023.10171952.

[8]. M. A. Yokus, T. Agcayazi, M. Traenkle, A. Bozkurt and M. A. Daniele, "Wearable Sweat Rate Sensors," 2020 IEEE SENSORS, Rotterdam, Netherlands, 2020, pp. 1-4, doi: 10.1109/SENSORS47125.2020.9278818.

[9]. M. Pigeon, N. Rather, B. O’Flynn and J. Buckley, "NFC Sensing of Tear Fluid for Animal health Monitoring," 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9410985.

[10]. V. Narasimhan, R. H. Siddique, Y. M. Wang and H. Choo, "Multifunctional Contact Lens Sensor For Tear Protein Analyses," 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 2022, pp. 25-26, doi: 10.1109/MEMS51670.2022.9699704.

[11]. H. Kudo et al., "Soft contact-lens biosensor for real-time tear sugar monitoring at the eye," 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea (South), 2012, pp. 2048-2051, doi: 10.1109/ICSMC.2012.6378040.

[12]. P. Kassanos, S. Anastasova and G. -Z. Yang, "A Low-Cost Amperometric Glucose Sensor Based on PCB Technology," 2018 IEEE SENSORS, New Delhi, India, 2018, pp. 1-4, doi: 10.1109/ICSENS.2018.8589804.

[13]. M. Aliramezani, C. R. Koch and R. Patrick, "A Variable-Potential Amperometric Hydrocarbon Sensor," in IEEE Sensors Journal, vol. 19, no. 24, pp. 12003-12010, 15 Dec.15, 2019, doi: 10.1109/JSEN.2019.2938920.

[14]. A. Herrera-Chacon, A. González-Calabuig, F. Bates, I. Campos and M. del Valle, "Novel voltammetric electronic tongue approach using polyelectrolyte modifiers to detect charged species," 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, QC, Canada, 2017, pp. 1-3, doi: 10.1109/ISOEN.2017.7968927.

[15]. M. L. Rodriguez-Mendez et al., "Analysis of grapes and wines using a voltammetric bioelectronic tongue: Correlation with the phenolic and sugar content," SENSORS, 2014 IEEE, Valencia, Spain, 2014, pp. 2139-2142, doi: 10.1109/ICSENS.2014.6985461.

[16]. E. S. Hosseini, L. Manjakkal and R. Dahiya, "Flexible and Printed Potentiometric pH Sensor for Water Quality Monitoring," 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, United Kingdom, 2021, pp. 1-4, doi: 10.1109/FLEPS51544.2021.9469778.

[17]. J. -C. Chou et al., "Study of the Glucose Sensor Based on Potentiometric Non-Enzymatic Nafion/CZO Thin Film," in IEEE Sensors Journal, vol. 21, no. 14, pp. 15926-15934, 15 July15, 2021, doi: 10.1109/JSEN.2021.3076068..

[18]. Hirsch, I. B., et al., “Advances in Continuous Glucose Monitoring: Past, Present, and Future,” Diabetes Care, vol. 46, no. 2, pp. 234-241, 2023, doi: 10.2337/dc22-1567.

[19]. T. S. Bailey, "Clinical Implications of Accuracy Measurements of Continuous Glucose Sensors," Diabetes Technology & Therapeutics, vol. 19, suppl. 2, pp. S51-S54, May 2017, doi: 10.1089/dia.2017.0050.

[20]. K. C. Janapati, Y. S. Vemula, V. Chindam, A. Bajjuri and Koushik, "IoT-Based Continuous Glucose Monitoring System," 2024 International Conference on Expert Clouds and Applications (ICOECA), Bengaluru, India, 2024, pp. 488-493, doi: 10.1109/ICOECA62351.2024.00091.

[21]. W. Guo, J. Hansson and W. van der Wijngaart, "Quantitative Glucose Measurement on a Synthetic Paper Test Strip," 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp. 1310-1313, doi: 10.1109/NEMS51815.2021.9451494.

[22]. Dexcom, "Continuous Glucose Monitoring Systems," Dexcom, 2023.

[23]. Medtronic, "MiniMed 670G System Overview," Medtronic, 2023.

[24]. Abbott, "FreeStyle Libre: Continuous Glucose Monitoring Systems," Abbott, 2023.

[25]. M. Mansour, M. S. Darweesh, and A. Soltan, "Wearable devices for glucose monitoring: A review of state-of-the-art technologies and emerging trends," Alexandria Engineering Journal, vol. 89, pp. 224-243, 2024..

[26]. A. Brown, “Trends in Continuous Glucose Monitoring: Market Analysis and Forecast,” Journal of Diabetes Technology, vol. 45, no. 4, pp. 1005-1012, 2022.

[27]. B. Reeder and A. David, "University of Colorado Anschutz Medical Campus, College of Nursing," Article in Nursing Journal, vol. 276, pp. 269-275, Sep. 2016

[28]. V. Ahanathapillai et al., Preliminary study on activity monitoring using an android smart-watch, Healthc. Technol. Lett. 2 (1) (2015) 34–39.

[29]. E. Rojas, S. L. Schmidt, A. Chowdhury, M. Pajic, D. A. Turner and D. S. Won, "A comparison of an implanted accelerometer with a wearable accelerometer for closed-loop DBS," 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 3439-3442, doi: 10.1109/EMBC48229.2022.9871232.

[30]. S. D. Bersch, C. M. J. Chislett, D. Azzi, R. Khusainov and J. S. Briggs, "Activity detection using frequency analysis and off-the-shelf devices: Fall detection from accelerometer data," 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 2011, pp. 362-365, doi: 10.4108/icst.pervasivehealth.2011.246119.

[31]. L. Luu, A. Pillai, H. Lea, R. Buendia, F. M. Khan and G. Dennis, "Accurate Step Count With Generalizable Deep Learning on Accelerometer Data," 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), AB, Canada, 2021, pp. 192-196, doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00042.

[32]. Y. Liu, D. Boshoff and G. P. Hancke, "Feasibility of using Gyroscope to Derive Keys for Mobile Phone and Smart Wearable," 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), Perth, Australia, 2022, pp. 151-156, doi: 10.1109/INDIN51773.2022.9976092.

[33]. S. Gouthaman, A. Pandya, O. Karande and D. R. Kalbande, "Gesture detection system using smart watch based motion sensors," 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, India, 2014, pp. 311-316, doi: 10.1109/CSCITA.2014.6839278.

[34]. H. -K. Ra, J. Ahn, H. J. Yoon, J. Ko and S. H. Son, "Accurately Measuring Heartrate Using Smart Watch," 2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Daegu, Korea (South), 2016, pp. 100-100, doi: 10.1109/RTCSA.2016.23.

[35]. A. I. Morenetz, B. N. Pavlenko, I. A. Lezhnina, A. A. Boyakhchyan and G. S. Evtushenko, "Algorithm for Assessing the Quality Compensation of the Skin-electrode Contact by Capacitive ECG Sensors," 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Chemal, Russia, 2020, pp. 418-422, doi: 10.1109/EDM49804.2020.9153546.

[36]. X. Zeng, Q. Liu, C. T. Chua, S. Chef and C. L. Gan, "Security Evaluation of Microcontrollers: A Case Study in Smart Watches," 2023 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Pulau Pinang, Malaysia, 2023, pp. 1-6, doi: 10.1109/IPFA58228.2023.10249184.

[37]. Ding, P., “A Review on Optical Biosensors for Monitoring of Uric Acid and Blood Glucose Using Portable POCT Devices,” Biosensors, vol. 15, no. 4, p. 222, 2025, doi: 10.3390/bios15040222.

[38]. Almeida, T. P., et al., “The Quest for Blood Pressure Markers in Photoplethysmography and Its Applications in Digital Health,” Frontiers in Digital Health, vol. 7, 2025, doi: 10.3389/fdgth.2025.1518322.

[39]. Shajari, S., et al., “The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review,” Sensors, vol. 23, no. 23, p. 9498, 2023, doi: 10.3390/s23239498.

[40]. J. Voldman, M. L. Gray, and M. A. Schmidt, "Title of the Article," Annual Review of Biomedical Engineering, vol. 1, pp. 401–425, 1999

[41]. M. Manvi and K. B. Mruthyunjaya Swamy, "Microelectronic materials, microfabrication processes, micromechanical structural configuration based stiffness evaluation in MEMS: A review," Microelectronic Engineering, vol. 263, p. 111854, 2022, doi: 10.1016/j.mee.2022.111854.

[42]. O. M. Ikumapayi, E. T. Akinlabi, A. O. M. Adeoye, and S. O. Fatoba, "Microfabrication and nanotechnology in manufacturing system – An overview," Materials Today: Proceedings, vol. 44, pt. 1, pp. 1154-1162, 2021, doi: 10.1016/j.matpr.2020.11.233.

[43]. A. A. Krimpenis and G. D. Noeas, "Application of Hybrid Manufacturing processes in microfabrication," Journal of Manufacturing Processes, vol. 80, pp. 328-346, 2022, doi: 10.1016/j.jmapro.2022.06.009.

[44]. G. Verma, K. Mondal, and A. Gupta, "Si-based MEMS resonant sensor: A review from microfabrication perspective," Microelectronics Journal, vol. 118, p. 105210, 2021, doi: 10.1016/j.mejo.2021.105210.

[45]. A. Kumar, et al, ”Optimization of laser machining process for the preparation of photomasks, and its application to microsystems fabrication” J. Nanolithogr. MEMS, MOEMS, 12 (4) (2013), 10.1117/1.JMM.12.4.041203

[46]. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603−1607.

[47]. Wang, S.; Xu, J.; Wang, W.; Wang, G. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S.; Feig, V. R.; Lopez, J.; et al. Skin Electronics from Scalable Fabrication of an Intrinsically Stretchable Transistor Array. Nature 2018, 555, 83−88.

[48]. Wang, G. J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z. Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Adv. Funct. Mater. 2016, 26, 7254−7262.

[49]. Yang, C. H.; Suo, Z. G. Hydrogel Ionotronics. Nat. Rev. Mater. 2018, 3, 125−142.

[50]. Tang, J. D.; Li, J. Y.; Vlassak, J. J.; Suo, Z. G. Adhesion between Highly Stretchable Materials. Soft Matter 2016, 12, 1093−1099.

[51]. Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838−843.

[52]. Kim, J.; Gutruf, P.; Chiarelli, A. M.; Heo, S. Y.; Cho, K.; Xie, Z.; Banks, A.; Han, S.; Jang, K. I.; Lee, J. W.; et al. Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry. Adv. Funct. Mater. 2017, 27, 1604373.

[53]. Leleux, P.; Badier, J. M.; Rivnay, J.; Benar, C.; Herve, T.; Chauvel, P.; Malliaras, G. G. Conducting Polymer Electrodes for Electroencephalography. Adv. Healthcare Mater. 2014, 3, 490−493.

[54]. Kanamura, K. Large-Scale Batteries for Green Energy Society. In Electrochemical Science for a Sustainable Society; Springer, 2017; pp 175−195.

[55]. Ostfeld, A. E.; Arias, A. C. Flexible Photovoltaic Power Systems: Integration Opportunities, Challenges and Advances. Flex. Print. Electron. 2017, 2, No. 013001.

[56]. Engler, R., Routh, T. L. & Lucisano, J. Y. Adoption barriers for continuous glucose monitoring and their potential reduction with a fully implanted system: results from patient preference surveys. Clin. Diabetes 36, 50–58 (2018)

[57]. S. Park, S. W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekinoi, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

[58]. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.-M. Tao, Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014).

[59]. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z. L. Wang, Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138–16146 (2016).

[60]. F. Suarez, A. Nozariasbmarz, D. Vashaee, M. C. Öztürk, Designing thermoelectric generators for self-powered wearable electronics. Energ. Environ. Sci. 9, 2099–2113 (2016).

[61]. H. Zhao, J. Horn, J. Reher, V. Paredes, A. D. Ames, First steps toward translating robotic walking to prostheses: A nonlinear optimization based control approach. Auton. Robot. 41, 725–742 (2017).

[62]. H. Zhao, E. Ambrose, A. D. Ames, Preliminary results on energy efficient 3D prosthetic walking with a powered compliant transfemoral prosthesis, in IEEE Int. Conf. Robot. Autom. (ICRA, 2017), pp. 1140–1147.

[63]. Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access, 3, 678-708.

[64]. Mishra, R. K., & Kumar, P. (2021). Wearable Internet of Things (WIoT) and Healthcare IoT Devices: Their Present and Future. IEEE Sensors Journal, 21(10), 11268-11276.

[65]. Klonoff, D. C. (2019). Continuous Glucose Monitoring: Roadmap for 21st Century Diabetes Therapy. Diabetes Care, 42(8), 1474-1480.

[66]. Rashid, Z., & Malik, A. (2016). Wearable ECG devices: Toward a miniaturized monitoring system for human health. IEEE Potentials, 35(3), 16-21.

[67]. Farahani, B., Firouzi, F., Chakrabarty, K., Kang, Y., & Sarrafzadeh, M. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems, 78, 659-676.

[68]. G. Chen, J. Zheng, L. Liu, and L. Xu, "Application of Microfluidics in Wearable Devices" Small Method, 2019, doi: 10.1002/smtd.201900688.

[69]. X. Li, X. He, X. Yang, G. Tian, C. Liu, and T. Xu, "A wearable sensor patch for joule-heating sweating and comfortable biofluid monitoring," Sensors and Actuators B: Chemical, vol. 419, p. 136399, 2024, doi: 10.1016/j.snb.2024.136399.

[70]. C. Wei, D. Fu, T. Ma, M. Chen, F. Wang, G. Chen, and Z. Wang, "Sensing patches for biomarker identification in skin-derived biofluids," Biosensors and Bioelectronics, vol. 258, p. 116326, 2024, doi: 10.1016/j.bios.2024.116326.

[71]. F. Bhinderwala, H. E. Roth, M. Filipi, S. Jack, and R. Powers, "Potential metabolite biomarkers of multiple sclerosis from multiple biofluids," ACS Chemical Neuroscience, vol. 15, no. 6, pp. 1110-1124, 2024, doi: 10.1021/acschemneuro.3c00678.

[72]. V. Tandon, W. S. Kang, T. A. Robbins, A. Spencer, E. S. Kim, M. J. Mckenna, S. G. Kujawa, J. Fiering, E. Pararas, M. Mescher, W. F. Sewell, J. T. Borenstein, Lab Chip 2016, 16, 829.

[73]. S. Agaoglu, P. Diep, M. Martini, S. KT, M. Baday, I. E. Araci, Lab Chip 2018, 18, 3471.

[74]. J. T. Reeder, J. Choi, Y. G. Xue, P. Gutruf, J. Hanson, M. Liu, T. Ray, A. J. Bandodkar, R. Avila, W. Xia, S. Krishnan, S. Xu, K. Barnes, M. Pahnke, R. Ghaffari, Y. G. Huang, J. A. Rogers, Sci. Adv. 2019, 5, eaau6356.

[75]. Y. D. Li, Y. X. Luo, S. Nayak, Z. J. Liu, O. Chichvarina, E. Zamburg, X. Y. Zhang, Y. Liu, C. H. Heng, A. V.-Y. Thean, Adv. Electron. Mater. 2019, 5, 1800463.

[76]. Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao,H. M. Fahad, Y. Leng, A. Zheng, F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing, A. Javey, Adv. Mater. 2017, 29, 1701985.

[77]. Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang, T. K. Hsiai, Z. Li and W. Gao, "A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat - Supplementary Information," Nature Biotechnology, vol. 38, no. 3, pp. 291-299, 2020, doi: 10.1038/s41587-019-0321-x.

[78]. A. J. Bandodkar, P. Gutruf, J. Choi, K. H. Lee, Y. Sekine, J. T. Reeder, W. J. Jeang, A. J. Aranyosi, S. P. Lee, J. B. Model, R. Ghaffari, C. -J. Su, J. P. Leshock, T. Ray, A. Verrillo, K. Thomas, V. Krishnamurthi, S. Han, J. Kim, S. Krishnan, T. Hang, J. A. Rogers, "Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat," *Science Advances*, vol. 5, no. 1, p. eaav3294, 2019, doi: 10.1126/sciadv.aav3294.

[79]. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. -H. Lien, G. A. Brooks, R. W. Davis, A. Javey, "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," *Nature*, vol. 529, pp. 509-514, 2016, doi: 10.1038/nature16521.

[80]. Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Mater. 12, 938–944 (2013).

[81]. Sprigle, S., Linden, M., McKenna, D., Davis, K. & Riordan, B. Clinical skin temperature measurement to predict incipient pressure ulcers. Adv. Skin Wound Care 14, 133–137 (2001).

[82]. Zhu, J., Qin, Y. & Zhang, Y. Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochem. Commun. 11, 1684–1687 (2009)

[83]. Kudo, H. et al. A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens. Bioelectron. 22, 558–562 (2006)

[84]. Alugubelli, N., et al., “Wearable Devices for Remote Monitoring of Heart Rate and Heart Rate Variability—What We Know and What Is Coming,” Sensors, vol. 22, no. 22, p. 8903, 2022, doi: 10.3390/s22228903.

[85]. Moorthy, P., et al., “Attributes, Methods, and Frameworks Used to Evaluate Wearables and Their Companion mHealth Apps: Scoping Review,” JMIR mHealth and uHealth, vol. 12, p. e52179, 2024, doi: 10.2196/52179.

[86]. Ammann, R. A., & Brack, E., “Non-Invasive Wearable Devices in Paediatric Cancer Care: Advancing Personalized Medicine,” EJC Paediatric Oncology, vol. 5, p. 100220, 2025, doi: 10.1016/j.ejcped.2025.100220.

[87]. Powell, D., “Wearable AI to Enhance Patient Safety and Clinical Decision-Making,” npj Digital Medicine, vol. 8, no. 1, 2025, doi: 10.1038/s41746-025-01554-w.

[88]. Shang, L., “Smart Contact Lenses: Disease Monitoring and Treatment,” Research, vol. 8, 2025, doi: 10.34133/research.0611.

[89]. Kang, H. S., & Exworthy, M., “Wearing the Future—Wearables to Empower Users to Take Greater Responsibility for Their Health and Care: Scoping Review,” JMIR mHealth and uHealth, vol. 10, no. 7, p. e35684, 2022, doi: 10.2196/35684.

[90]. Chandrasekaran, R., et al., “Usage Trends and Data Sharing Practices of Healthcare Wearable Devices Among US Adults: Cross-Sectional Study,” Journal of Medical Internet Research, vol. 27, p. e63879, 2025, doi: 10.2196/63879.

Cite this article

Wang,S. (2025). Wearable Devices in Healthcare: Technological Advancements, Clinical Applications, and Future Horizons. Applied and Computational Engineering,169,11-24.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MSS 2025 Symposium: Machine Vision System

ISBN: 978-1-80590-209-6(Print) / 978-1-80590-210-2(Online)
Editor: Cheng Wang, Marwan Omar
Conference date: 5 June 2025
Series: Applied and Computational Engineering
Volume number: Vol.169
ISSN: 2755-2721(Print) / 2755-273X(Online)