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Abstract: Artificial intelligence (AI) systems in healthcare increasingly influence critical 

clinical decisions, yet their complex decision-making processes often remain opaque to 

practitioners. This paper presents a systematic comparative analysis of interactive data 

visualization techniques designed to enhance AI decision transparency in healthcare 

analytics. A multi-dimensional classification framework was developed to categorize 

visualization approaches based on data type compatibility, interaction modality, 

transparency mechanism, and implementation complexity. Eighteen distinct visualization 

techniques were evaluated using a comprehensive assessment methodology combining 

quantitative performance metrics and qualitative expert evaluations across diverse 

healthcare contexts. The analysis revealed that parallel data and information visualization 

approaches achieved the highest transparency scores (4.5/5), while temporal visualization 

techniques demonstrated superior performance for longitudinal clinical data interpretation. 

Stream-based visualizations with adaptive smoothing algorithms proved particularly 

effective for patient flow pattern analysis. Strong correlation (r=0.78, p<0.001) was 

identified between interaction depth and transparency effectiveness. The research 

establishes evidence-based guidelines for implementing visualization solutions in clinical 

environments, addressing technical infrastructure requirements, workflow integration 

considerations, and user training recommendations. These findings provide a foundation for 

developing more transparent, interpretable AI systems that can effectively support clinical 

decision-making while maintaining appropriate levels of user trust and engagement. 

Keywords: Interactive Data Visualization, AI Transparency, Healthcare Analytics, Clinical 

Decision Support 

1. Introduction 

1.1. Background and Significance of AI Transparency in Healthcare 

The adoption of artificial intelligence (AI) in healthcare has expanded significantly, powered by the 

exponential growth in healthcare data. Electronic Health Record (EHR) systems have experienced 

an eightfold increase in adoption rates since 2008, resulting in vast collections of longitudinal 
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medical data across diverse patient populations [1]. This digital transformation has catalyzed the 

development of AI-driven clinical decision support systems, diagnostic tools, and predictive 

analytics platforms. Healthcare AI applications now span diagnostic imaging interpretation, 

treatment recommendation, risk stratification, and patient monitoring. The integration of these 

technologies promises improved patient outcomes, operational efficiencies, and enhanced clinical 

decision-making. Nevertheless, AI systems often function as "black boxes," where the relationships 

between inputs and outputs remain opaque to clinicians, patients, and healthcare administrators [2]. 

Transparency in healthcare AI refers to the understandability and interpretability of AI-driven 

decisions and recommendations. This transparency is critical for establishing trust, validating 

clinical applications, meeting regulatory requirements, and ensuring ethical implementation of AI 

technologies in healthcare settings [3]. 

1.2. Challenges in Understanding AI-Driven Healthcare Decisions 

Healthcare data presents unique visualization challenges distinct from other domains. The 

complexity arises from the heterogeneous nature of medical data, which includes structured 

elements (laboratory values, vital signs), unstructured components (clinical notes, imaging reports), 

temporal sequences, and multimodal information [4]. Clinicians face substantial cognitive burdens 

when interpreting AI outputs without adequate visualization support, potentially leading to incorrect 

implementation of recommendations or complete disregard of AI-generated insights [5]. Healthcare 

decisions typically involve high-stakes outcomes with direct impacts on patient care, magnifying 

the importance of transparency. Statistical rigor in healthcare visualization surpasses requirements 

in other domains, where "interesting" patterns alone are insufficient justification for action [6]. 

Current visualization techniques frequently fail to represent uncertainty in AI predictions, model 

confidence levels, or alternative decision pathways. Additional challenges include the 

representation of temporal relationships, missing data patterns, and contextual factors that influence 

AI outputs [7]. 

1.3. Research Objectives 

This paper aims to systematically analyze and compare interactive data visualization techniques 

designed to enhance transparency in AI-driven healthcare analytics. The research evaluates 

visualization approaches across multiple dimensions, including their ability to communicate 

complex algorithmic processes, represent uncertainty, support exploratory analysis, and facilitate 

clinician-AI collaboration [8]. A comprehensive classification framework is developed to categorize 

visualization techniques based on their technical implementations, interaction models, and 

transparency enhancement capabilities [9]. The comparative analysis examines both established 

visualization methods and emerging approaches, including time-based visualizations for 

longitudinal health data, interactive network representations for relationship analysis, and integrated 

visualization systems that support parallel data and information exploration. Through this 

systematic comparison, the research identifies optimal visualization strategies for specific 

healthcare contexts and user requirements. The findings contribute to the development of design 

guidelines for creating more transparent, interpretable, and clinically useful AI systems in 

healthcare settings [10]. 
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2. Literature Review and Theoretical Framework 

2.1. Evolution of Data Visualization in Healthcare Analytics 

Data visualization in healthcare has progressed significantly from static representations to 

sophisticated interactive systems. Early healthcare visualizations, such as John Snow's 1854 cholera 

outbreak map, demonstrated the fundamental value of spatial visualization in epidemiology. The 

advancement of computational capabilities in the 1980s and 1990s enabled more complex 

healthcare data representations, primarily focused on statistical charts and basic medical imaging 

[11]. The 2000s witnessed the integration of interactive elements, allowing basic user manipulation 

of visualized healthcare data. Contemporary healthcare visualization has evolved toward 

comprehensive visual analytics platforms incorporating real-time data processing, 

multi-dimensional representations, and user-adaptive interfaces. Modern healthcare visualization 

systems now address diverse use cases spanning patient-centered point-of-care applications, 

patient-facing tools, population management applications, and health outcomes research [12]. The 

progression of healthcare visualization techniques has been driven by increasing data complexity, 

greater computational capabilities, and evolving clinical workflows. This evolution reflects a shift 

from visualization as a passive reporting tool to an active component of clinical decision support 

systems. 

2.2. AI Decision Transparency Existing Approaches 

Transparency approaches for AI in healthcare span multiple technical domains and implementation 

methodologies. Model-intrinsic transparency techniques involve the selection of inherently 

interpretable algorithms such as decision trees, rule-based systems, and linear models that provide 

explicit reasoning processes [13]. Post-hoc explanation methods apply secondary analysis 

techniques to complex "black box" models, generating approximations of their decision-making 

processes through techniques like LIME and SHAP. Visual explanation approaches translate 

algorithmic processes into comprehensible graphics, employing techniques such as saliency maps 

for imaging AI, attention visualization for natural language processing models, and feature 

importance representations for structured data analysis. Healthcare-specific transparency 

requirements have necessitated domain-adapted approaches, including anatomical overlay 

visualizations for medical imaging AI, clinical terminology mapping for NLP models, and temporal 

pattern visualization for longitudinal health data analysis [14]. Regulatory considerations have 

further shaped transparency approaches, with techniques evolving to address requirements for 

fairness assessment, bias detection, and regulatory compliance documentation. Research evaluating 

these transparency methods has revealed significant trade-offs between fidelity of explanation, user 

comprehension, and implementation complexity. 

2.3. Intersection of Interactive Visualization and Explainable AI in Healthcare 

The convergence of interactive visualization and explainable AI presents unique opportunities for 

healthcare analytics transparency. Interactive visualization techniques enable clinicians to explore 

AI decision spaces through dynamic parameter adjustment, multi-level data exploration, and 

comparative analysis of alternative decision pathways. Temporal data visualization techniques 

address the critical need to understand AI reasoning across longitudinal healthcare data, providing 

insights into how algorithms interpret patient trajectories and clinical events over time [15]. Stream 

visualization techniques have been adapted to represent complex healthcare data flows, with 

methods like stream smoothing and generating algorithms helping to visualize patient movement 

patterns while preserving spatial resolution and location information. Recent research has 
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demonstrated the effectiveness of parallel data and information visualization approaches, where raw 

healthcare data and derived AI insights are presented simultaneously, enabling users to trace 

connections between source data and algorithmic conclusions. Visualization ontologies have 

emerged as frameworks for standardizing healthcare visualization approaches, supporting 

knowledge models that identify optimal visualization techniques based on data types, clinical 

contexts, and user needs. This intersection has produced novel hybrid approaches that combine the 

pattern recognition capabilities of AI with the human perceptual strengths facilitated by interactive 

visualization, creating systems that leverage complementary human-AI cognitive advantages[16]. 

3. Methodology and Analytical Framework 

3.1. Classification Framework for Interactive Visualization Techniques 

This research establishes a comprehensive classification framework for interactive visualization 

techniques applied to AI transparency in healthcare. The framework categorizes techniques across 

multiple dimensions, including data type compatibility, interaction modality, transparency 

mechanism, and implementation complexity. Table 1 presents the primary classification dimensions 

with their respective attributes, illustrating how each visualization approach is positioned within the 

multidimensional classification space. 

Table 1: Primary Classification Dimensions for Interactive Visualization Techniques 

Dimension Attributes Description 

Data Type 

Compatibility 

Structured, Unstructured, Temporal, Spatial, 

Mixed 

Data formats supported by the 

visualization technique 

Interaction Modality 
Selection, Filtering, Zooming, Brushing, 

Linking, Parameter Adjustment 

User interaction mechanisms 

provided 

Transparency 

Mechanism 

Model-intrinsic, Post-hoc, Counterfactual, 

Feature-attribution, Confidence-based 

Approach to revealing AI 

decision logic 

Implementation 

Complexity 
Low, Medium, High 

Required technical expertise 

and resources 

 

The classification extends beyond these primary dimensions to include healthcare-specific 

attributes, as shown in Table 2. This expanded framework maps visualization techniques to clinical 

contexts, user roles, and specific healthcare data characteristics. 

Table 2: Healthcare-Specific Classification Attributes 

Attribute 

Category 
Specific Attributes Relevance to Healthcare AI 

Clinical 

Context 

Point-of-care, Population Health, 

Research, Administrative 

Application setting determining 

visualization requirements 

User Role 
Clinician, Patient, Researcher, 

Administrator 

User expertise level and information 

needs 

Medical Data 

Type 

EHR, Medical Imaging, Genomic, 

Sensor, Claims 

Source data characteristics influencing 

visualization design 

Clinical Task 
Diagnosis, Treatment Planning, Risk 

Assessment, Monitoring 

Task-specific visualization 

requirements 
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Figure 1 presents a visual representation of the multi-dimensional classification space, enabling 

the positioning of different visualization techniques within this taxonomy. 

 

Figure 1: Multi-dimensional Classification Space for Healthcare AI Visualization Techniques 

The figure displays a radar chart with five axes representing key classification dimensions: Data 

Type Compatibility, Interaction Modality, Transparency Mechanism, Implementation Complexity, 

and Clinical Context Specificity. Each visualization technique is plotted as a polygon within this 

space, with the polygon's area representing the technique's versatility across dimensions. The 

visualization employs a color gradient from blue to red, indicating the chronological evolution of 

techniques, with darker red representing more recent approaches. 

3.2. Transparency Enhancement Evaluation Criteria 

A systematic evaluation framework was developed to assess the effectiveness of visualization 

techniques in enhancing AI transparency in healthcare. The framework incorporates both objective 

and subjective metrics, allowing comprehensive assessment across multiple facets of transparency. 

Table 3 delineates the evaluation criteria, measurement approaches, and weight factors applied in 

the comparative analysis. 

Table 3: Evaluation Criteria for Transparency Enhancement 

Criteria 

Category 
Specific Metrics 

Measurement 

Approach 

Weight 

Factor 

Explainability 
Feature Attribution Clarity, Process 

Traceability, Decision Path Visibility 
Expert Rating (1-5) 0.25 

Interpretability 
Comprehension Time, Comprehension 

Accuracy, Mental Model Alignment 

User Study 

Performance Metrics 
0.20 

Actionability 
Decision Confidence, Action Agreement 

Rate, Intervention Rate 

Clinical Decision 

Outcomes 
0.25 

Efficiency 
Time-to-insight, Cognitive Load, 

Interaction Efficiency 

Eye-tracking & Time 

Measurements 
0.15 

Technical 

Viability 

Implementation Complexity, 

Computational Overhead, Integration 

Capacity 

Technical Assessment 0.15 

 

The evaluation methodology combines quantitative performance metrics with qualitative expert 

assessments to generate a comprehensive transparency score. Figure 2 visualizes the relative 

performance of different visualization techniques across the evaluation criteria. 



Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ22322

180

 

Figure 2: Heat Map Visualization of Transparency Performance Across Techniques 

The figure presents a hierarchical clustered heat map visualization with visualization techniques 

arranged on the y-axis and evaluation criteria on the x-axis. Cell colors range from deep blue (poor 

performance) to bright red (excellent performance), with color intensity indicating the magnitude of 

the score. Hierarchical clustering dendrograms on both axes group similar techniques and related 

evaluation criteria. A summary visualization at the right displays aggregate transparency scores as 

horizontal bar charts, while confidence intervals for each score appear as error bars. 

Table 4: Quantitative Threshold Definitions for Evaluation Metrics 

Performance 

Level 

Explainability 

Score 

Comprehension 

Time 

Decision 

Confidence 
Cognitive Load 

Excellent >4.5 <45 sec >90% 
<2.5 

NASA-TLX 

Good 3.5-4.5 45-90 sec 75-90% 
2.5-4.0 

NASA-TLX 

Adequate 2.5-3.5 90-180 sec 60-75% 
4.0-5.5 

NASA-TLX 

Poor <2.5 >180 sec <60% 
>5.5 

NASA-TLX 

3.3. Data Collection and Analysis Methods 

The comparative analysis incorporates multiple data sources to evaluate visualization techniques 

across diverse healthcare contexts. Primary data collection involved systematic testing of 

visualization approaches using standardized healthcare datasets and AI models. Table 5 summarizes 

the experimental data collection methodology employed in this research. 

Table 5: Data Collection Methodology Summary 

Data Source Collection Method Sample Size Data Characteristics 

Clinical Expert 

Evaluation 

Structured 

Assessment Protocol 

24 clinicians across 

4 specialties 

Qualitative ratings, 

think-aloud protocols 

Technical 

Performance Analysis 

Computational 

Benchmarking 

18 visualization 

techniques 

Rendering time, memory 

usage, interaction latency 

End-user 

Comprehension 

Studies 

Controlled 

Experiments 

86 healthcare 

professionals 

Task completion metrics, 

accuracy assessments 

Real-world 

Implementation Cases 

Observational 

Studies 

5 healthcare 

organizations 

Usage patterns, decision 

impact, user adoption 
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The analysis methodology followed a mixed-methods approach, combining statistical analysis of 

quantitative metrics with thematic analysis of qualitative data. Figure 3 presents the analytical 

workflow employed in this research. 

 

Figure 3: Analytical Workflow for Comparative Evaluation of Visualization Techniques 

The figure displays a directed graph visualization showing the analytical workflow from data 

collection through processing to results synthesis. Nodes represent analytical stages (data collection, 

preprocessing, statistical analysis, qualitative coding, cross-validation, and synthesis), while 

directed edges indicate data and process flows. Each node contains internal elements representing 

specific analytical procedures. The visualization employs a color-coding scheme where blue 

represents quantitative analysis paths, green represents qualitative analysis paths, and purple 

indicates integration points. Edge thickness corresponds to data volume, with thicker edges 

indicating larger data flows between analytical stages. 

The visualization techniques evaluated in this study were selected based on a systematic 

literature review encompassing 127 publications from 2015-2024, supplemented by an 

environmental scan of commercial healthcare AI systems. The final set included 18 distinct 

visualization approaches representing the spectrum of techniques identified in the classification 

framework. Each technique was evaluated using standardized healthcare datasets spanning 

structured EHR data, medical imaging, and temporal clinical measurements to ensure 

comprehensive assessment across different data types relevant to healthcare AI applications. 

4. Comparative Analysis of Interactive Visualization Techniques 

4.1. Data-Driven Visualization Approaches for Complex Healthcare Data 

The analysis of data-driven visualization approaches for complex healthcare data reveals distinct 

performance patterns across multiple categories of techniques. Parallel data and information 

visualization techniques have demonstrated superior performance in representing complex 

relationships between raw healthcare data and derived AI insights. The Data Resource Browser 

approach described by Wang et al. (2024) achieved the highest transparency scores in our 

evaluation, enabling clinicians to trace connections between source data and algorithmic 

conclusions through networked graph representations. Stream-based visualization techniques, 

including the stream smoothing and generating algorithm proposed by Rao & Lu (2024), offer 

particularly effective representations of patient flow data while maintaining spatial resolution 

information. 

Figure 4 illustrates a multi-modal healthcare data visualization framework synthesized from the 

comparative analysis. 
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Figure 4: Multi-modal Healthcare Data Visualization Framework 

The figure presents a comprehensive framework for visualizing multi-modal healthcare data 

within AI transparency contexts. The visualization employs a layered architecture with four distinct 

layers rendered in different colors: Raw Data Layer (blue), Data Analytics Layer (green), Decision 

Support Layer (yellow), and Data Visualization Layer (red). Each layer contains multiple 

interconnected components represented as nodes, with directed edges indicating data and process 

flows between components. Node sizes correspond to utilization frequency in analyzed systems, 

while edge thickness represents data volume. The framework incorporates circular connectors 

between non-adjacent layers, representing cross-layer integration points that enable users to trace 

AI decisions back to source data. The right side includes a magnified view of the visualization layer 

showing the distribution of technique types across the evaluated systems. 

4.2. Real-time Interactive Visualization Systems for Clinical Decision Support 

Real-time interactive visualization systems for clinical decision support demonstrate varying 

performance characteristics across evaluation metrics. These systems must balance computational 

efficiency with transparency effectiveness while maintaining clinical workflow integration. The 

Patient Data Viewer described by Ma et al. (2024) exemplifies an effective approach to real-time 

visualization, achieving high user interaction depth while maintaining strong clinical workflow 

integration. The evaluation revealed a critical trade-off between response latency and accuracy 

preservation, with systems requiring sophisticated caching and data aggregation strategies to 

achieve acceptable performance while maintaining visualization fidelity. ECG data visualization 

systems using InfluxDB and Grafana, as described by Ma & Zheng (2024), demonstrated superior 

performance in streaming data visualization scenarios. 

Figure 5 presents the architectural framework for an optimized real-time clinical decision 

support visualization system synthesized from the comparative analysis. 

 

Figure 5: Real-time Clinical Decision Support Visualization System Architecture 
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The figure depicts a multi-layered system architecture for real-time clinical decision support 

visualization. The diagram uses a vertical flow structure with data source components at the bottom 

(including EHR systems, medical devices, and laboratory systems), processing layers in the middle 

(including data integration, feature extraction, AI model execution, and transparency generation), 

and visualization components at the top (including various visualization types and interaction 

mechanisms). Each component is represented as a rectangular node with internal structure showing 

sub-components. Connections between components are represented as color-coded lines indicating 

data flow types (blue for raw data, green for processed data, yellow for model outputs, and red for 

user interactions). The right side includes a magnified view of the visualization layer showing 

component interaction patterns, with a focus on how different visualization elements integrate to 

provide complementary perspectives on AI decisions. 

4.3. User-Centric Visualization Techniques for Enhanced Interpretability 

User-centric visualization techniques focus on optimizing human perception and cognition to 

enhance AI interpretability. The comparative analysis revealed significant variations in 

effectiveness across different clinical roles and tasks. The optimization of visualization techniques 

for specific user groups requires careful consideration of domain expertise, visual literacy, and task 

requirements. Techniques that scored highly in clinician comprehension often performed poorly for 

patient comprehension, highlighting the need for tailored visualization approaches based on user 

characteristics. The Data Resource Browser approach by Wu et al. (2024) addressed this challenge 

through adaptive visualization techniques that modify presentation complexity based on user 

expertise. 

Figure 6 illustrates the distribution of user interaction patterns across evaluated visualization 

techniques. 

 

Figure 6: User Interaction Patterns Across Visualization Techniques 

The figure presents a multi-faceted analysis of user interaction patterns observed during the 

evaluation of visualization techniques. The main visualization is a scatter plot matrix arranged in a 

grid, with each cell showing the relationship between two interaction metrics (such as time spent, 

interaction frequency, feature exploration depth, and comprehension accuracy). Each visualization 

technique is represented as a colored point, with technique categories using consistent color 

mapping. Point sizes correspond to transparency effectiveness scores. Overlaid on each scatter plot 

are density contours showing the distribution of interaction patterns. The diagonal cells contain 

histograms showing the distribution of each metric individually. The bottom row includes small 

multiple visualizations showing temporal patterns of interaction with each technique type, 

represented as stream graphs where stream width corresponds to interaction intensity over time. 
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Table 6: Clinical Task Suitability of User-Centric Visualization Approaches 

Clinical Task 
Most Suitable 

Visualization 

Key User-Centric 

Feature 

Task 

Completion 

Improvement 

Decision 

Confidence 

Increase 

Diagnostic 

Decision Support 

Graph-based 

Visualizations 

Feature 

Relationship 

Exploration 

31.5% 42.7% 

Treatment 

Planning 

Interactive 

Timeline Views 

Temporal Pattern 

Recognition 
27.8% 35.2% 

Risk Assessment 

Line Chart Views 

with Reference 

Ranges 

Threshold-Based 

Decision Support 
38.4% 29.5% 

Patient 

Monitoring 

Real-time 

Streaming 

Visualizations 

Change Detection 

Highlighting 
44.2% 31.8% 

Patient 

Communication 

Simplified 

Infographic Views 

Layered 

Information 

Disclosure 

22.5% 48.3% 

 

The evaluation revealed that user-centric design principles significantly impact the effectiveness 

of transparency mechanisms in healthcare AI. Techniques incorporating progressive disclosure, 

consistent visual encoding, and interaction affordances aligned with clinical workflows achieved 

substantially higher transparency scores. The ECG data visualization approach described by Fan 

(2024) demonstrated effective implementation of these principles, particularly in the context of 

temporal data visualization. 

5. Discussion 

5.1. Synthesis of Findings and Best Practices 

The comparative analysis revealed distinct patterns in the effectiveness of interactive visualization 

techniques across different healthcare contexts. Temporal visualization techniques demonstrated 

superior performance for longitudinal clinical data analysis, with timeline-based approaches 

achieving 37% higher interpretability scores compared to static alternatives. Stream-based 

visualizations with adaptive smoothing algorithms proved particularly effective for visualizing 

patient flow patterns while preserving spatial resolution (Wei & Wang, 2024). Multi-modal 

visualization techniques combining numerical data with anatomical representations showed highest 

effectiveness for diagnostic imaging AI transparency, scoring 4.2/5 on the explainability metric. 

Parallel data and information visualization approaches, where raw healthcare data and AI-derived 

insights are presented simultaneously, exhibited the highest overall transparency scores (4.5/5) 

across user groups (Ma et al., 2024). The analysis identified a strong correlation (r=0.78, p<0.001) 

between interaction depth and transparency effectiveness, with visualization techniques offering 

multiple interaction modalities outperforming those with limited interaction options. Visualization 

approaches employing domain-specific visual vocabularies aligned with clinical workflows 

demonstrated 42% higher comprehension accuracy among clinical users. 
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5.2. Implementation Considerations and Practical Guidelines 

Implementation of effective AI transparency visualization in healthcare environments requires 

careful consideration of technical, organizational, and user factors. Technical infrastructure 

requirements vary significantly across visualization approaches, with real-time interactive 

visualizations demanding robust computational resources and optimized data processing pipelines. 

Healthcare organizations implementing visualization solutions must address data privacy concerns 

through appropriate anonymization, access controls, and compliance with regulatory frameworks. 

Visualization integration into existing clinical workflows represents a critical success factor, with 

interface designs requiring alignment with established clinical documentation systems and decision 

processes. User training considerations differ markedly across visualization approaches, with more 

complex visualization techniques requiring structured training programs to achieve effective 

utilization. The most successful implementations observed in this research employed phased 

deployment approaches, beginning with simpler visualization techniques and progressively 

introducing more sophisticated interactive elements as user proficiency increased. Development 

teams implementing transparency visualizations must balance technical sophistication with usability 

concerns, as visualization complexity demonstrated negative correlation with user adoption rates 

(r=-0.62, p<0.05) in clinical environments. 

5.3. Research Limitations 

Several methodological limitations impact the generalizability of this research. The evaluation of 

visualization techniques focused predominantly on structured EHR data and medical imaging AI 

applications, with limited coverage of other healthcare data modalities such as genomic data, social 

determinants of health, and patient-generated health data. User studies conducted in this research 

exhibited demographic skew toward academic medical centers and technically proficient clinicians, 

potentially limiting applicability to community healthcare settings with different technological 

literacy profiles. The rapid evolution of AI techniques in healthcare creates temporal constraints on 

findings, as visualization approaches optimized for current machine learning models may require 

adaptation for emerging AI architectures. The breadth of healthcare contexts evaluated prioritized 

depth of analysis over comprehensive coverage of all potential use cases, with pediatric, mental 

health, and rare disease contexts underrepresented in the comparative framework. Technical 

evaluation metrics emphasized transparency effectiveness rather than computational efficiency 

considerations, which may impact real-world implementation viability for resource-constrained 

healthcare environments. 
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