
 

 

Behavioral Responses to AI Financial Advisors: Trust 
Dynamics and Decision Quality Among Retail Investors 

Toan Khang Trinh1,*, Guancong Jia2, Caiqian Cheng3, Chunhe Ni4 

1Computer Science, California State University Long Beach, CA, USA 

2Computer Science, Rice University, TX, USA 
3Computer Science, University of California, San Diego, CA, USA 

4Computer Science, University of Texas at Dallas, Richardson, TX, USA 

*Corresponding Author. Email: maxxxlee090@gmail.com 

Abstract: This study examines trust dynamics and decision quality among retail investors 

interacting with AI financial advisors. Using a convergent parallel mixed methods design 

incorporating surveys (n=428) and interviews (n=42), we investigate how trust forms, evolves, 

and influences investment outcomes. Results demonstrate that institutional affiliation (β=0.68, 

p<0.001) and perceived competence (β=0.57, p<0.001) significantly influence initial trust 

formation, while system explainability features substantially impact trust sustainability (high-

explainability M=4.76 vs. low-explainability M=3.28, p<0.001, d=1.78). Longitudinal 

analysis reveals non-linear trust trajectories with distinct investor classes showing increasing 

(58.2%), stable (23.7%), or degrading (18.1%) patterns over nine months. AI-advised 

portfolios outperformed self-directed investments by 7.2% on risk-adjusted returns (Sharpe 

ratio: 0.83 vs. 0.65, p<0.01) with significant reductions in overconfidence bias (41.3%) and 

disposition effect (37.8%). Financial literacy moderates these benefits, with high-literacy 

investors showing smaller performance differentials between AI-advised and self-directed 

conditions compared to low-literacy participants. Transparency regarding system limitations 

demonstrates particularly strong effects on trust calibration, with 76.4% of participants in 

transparent conditions exhibiting appropriate reliance patterns versus 34.2% in non-

disclosure conditions. These findings advance understanding of human-AI interaction in 

financial contexts and provide implications for designing trustworthy advisory systems that 

enhance retail investor outcomes. 
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1. Introduction and Background 

1.1. The Evolution of Financial Advisory Services: From Human to AI 

Traditional financial advisory services have historically operated through human intermediaries 

providing personalized investment guidance based on client objectives and market conditions. The 

digital transformation of financial services has fundamentally altered this paradigm through 

progressive technological integration. Original automation, which focuses on the basic functions and 

balancing functions of the portfolio, gradually expanding to cover sophisticated data analytics and 

predict the modeling properties. The emergence of financial advisors for AI-engines represents a 

Proceedings of  the 3rd International  Conference on Functional  Materials  and Civil  Engineering 
DOI:  10.54254/2755-2721/144/2025.21859 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

69 



 

 

significant evolutionary power column, which is characterized by algorithmic decision-making 

frameworks capable of handling extensive information troops to develop investment 

recommendations (EMBARAK, [1]. These systems implement machine learning techniques to 

identify patterns and correlations within financial markets that might elude human detection. The 

integration of behavioral finance principles into AI systems has enhanced their ability to account for 

psychological biases in investment decisions, addressing a critical limitation of purely rational models 

(Srivastav & Gupta[2]. The shift toward AI-based advisory presents both technological and 

behavioral challenges, particularly regarding trust formation between retail investors and automated 

systems. User acceptance of these technologies depends significantly on perceived usefulness, ease 

of use, and trust factors, as demonstrated in technology adoption frameworks applied to financial 

services[3]. 

1.2. The Current Landscape of AI Financial Advisors in Retail Investment 

The retail area has seen a significant spread of AI-economic advisory platforms, which ranges from 

fully automated robbo advisors to hybrid models that include human control. Modern AI advisors use 

a number of analytical approaches, including natural language handling for emotional analysis, deep 

learning market prediction, and recommended engines for portfolio construction[4]. These systems 

offer clear benefits, including cost effectiveness, accessibility, minimum investment threshold and 

elimination of certain people's cognitive bias. The distribution of the market varies significantly to 

demographic structures, and younger investors show better reception capacity towards AI-controlled 

financial services. Integration of explainable AI components addresses transparency concerns by 

enabling retail investors to understand the rationale behind specific recommendations. Trust 

development between investors and AI systems exhibits correlation with system performance, 

transparency mechanisms, and perceived risk mitigation[5]. The competitive landscape features both 

traditional financial institutions implementing AI capabilities and fintech startups focused exclusively 

on automated advisory solutions. Regulatory frameworks continue to evolve, addressing issues of 

fiduciary responsibility, algorithmic accountability, and data privacy protection. Current research 

indicates varying degrees of trust and adoption among retail investors based on financial literacy, 

technological familiarity, and risk tolerance profiles. 

2. Theoretical Framework and Literature Review 

2.1. Behavioral Finance Theory and Investment Decision Psychological Biases 

Behavioral finance theory provides a foundational framework for understanding retail investor 

interactions with AI advisors by examining cognitive and emotional factors influencing financial 

decision-making. Traditional finance models assume investor rationality, utility maximization, and 

efficient markets; behavioral finance acknowledges systematic deviations from rationality through 

documented psychological biases[6]. Overconfidence bias manifests when investors overestimate 

their knowledge and abilities, leading to excessive trading and portfolio underperformance. Loss 

aversion describes investors' tendency to experience losses more intensely than equivalent gains, 

frequently resulting in suboptimal portfolio decisions. Confirmation bias drives investors to seek 

information confirming existing beliefs while disregarding contradictory evidence. Recency bias 

causes disproportionate weight assignment to recent events in projecting future outcomes[7]. 

Disposition effect characterizes the propensity to retain underperforming investments while 

prematurely selling profitable positions. Mental accounting involves categorizing assets into separate 

accounts, potentially undermining comprehensive portfolio optimization. Anchoring bias occurs 

when investors rely excessively on initial information points, inadequately adjusting subsequent 

assessments. These psychological biases present substantial challenges for AI advisory system design, 
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requiring algorithmic approaches detecting and mitigating systematic decision errors. Computational 

models implementing bias detection and correction mechanisms represent advancing research 

directions, incorporating personality profiles and risk tolerance assessments to deliver personalized 

guidance addressing individual psychological predispositions. 

2.2. Trust Formation in Human-AI Interaction: Models and Mechanisms 

Trust formation between retail investors and AI financial advisors operates through distinct 

psychological mechanisms and theoretical frameworks. The Technology Acceptance Model (TAM) 

identifies perceived usefulness and ease of use as primary determinants of user adoption, with trust 

functioning as a critical mediating variable. Initial trust establishment depends on system credibility 

signals including institutional reputation, transparency disclosures, and perceived competence. Trust 

development processes progress through distinct phases: calculus-based trust founded on 

performance consistency, knowledge-based trust developing through repeated interactions, and 

identification-based trust emerging from perceived alignment with investor values and objectives[8]. 

Trust calibration mechanisms govern appropriate reliance levels, preventing both excessive 

skepticism and over-reliance on automated recommendations. Perceived risk significantly impacts 

trust development, operating independently yet interactively with trust formation processes. Risk 

perception encompasses multiple dimensions including performance risk, financial risk, privacy risk, 

and psychological risk. Trust transference from established institutions to affiliated AI systems 

constitutes a notable adoption pathway. Explainability functions as a critical trust facilitator by 

rendering algorithmic decision processes interpretable to users[18]. Transparency regarding system 

limitations represents an essential trust-building component, establishing appropriate expectation 

levels. System design features incorporating interpersonal trust cues through anthropomorphic 

elements may enhance trust formation but present ethical considerations regarding appropriate human 

mimicry boundaries[9]. 

3. Research Methods and Design 

3.1. Mixed Methods for Studying Investor Behavior 

This research employed a convergent parallel mixed methods design integrating quantitative surveys 

with qualitative interviews to comprehensively examine investor interactions with AI financial 

advisors. The quantitative component utilized a structured questionnaire administered to 428 retail 

investors across multiple platforms, capturing behavioral tendencies, trust metrics, and decision 

outcomes through standardized scales[10]. Qualitative data collection involved semi-structured 

interviews with 42 participants selected through stratified purposive sampling, conducted until 

theoretical saturation occurred at approximately 40 interviews. Triangulation across methodologies 

enhanced validity by examining phenomena from multiple perspectives, yielding complementary 

insights regarding trust formation processes[10]. 

A sequential explanatory component followed initial data collection, wherein preliminary 

quantitative findings informed subsequent qualitative protocols. This approach facilitated deeper 

investigation of statistically significant correlations between trust variables and decision outcomes. 

The mixed methodology implementation incorporated Tashakkori and Teddlie's integrative 

framework, emphasizing methodological congruence across research phases. Statistical analyses 

employed SPSS v28.0 for quantitative data processing, while MAXQDA facilitated thematic analysis 

of interview transcripts using an iterative coding process. Research design validity addressed potential 

mono-method bias through procedural remedies including temporal separation between predictor and 

criterion variable measurements. 
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Table 1 presents the mixed methods implementation strategy across research phases, detailing 

timing, weighting, and integration approaches. 

Table 1: Mixed Methods Implementation Matrix 

Research 

Phase 
Method 

Sample 

Size 
Timing Weight Integration Point 

Phase 1 Quantitative Survey 428 Weeks 1-6 Primary Design Level 

Phase 2 
Qualitative 

Interviews 
42 

Weeks 4-

10 
Secondary Analysis Level 

Phase 3 
Experimental 

Simulation 
156 

Weeks 12-

16 
Tertiary 

Interpretation 

Level 

Phase 4 
Longitudinal 

Follow-up 
187 

Months 3-

9 
Primary 

Methodological 

Level 

 

Figure 1: Convergent Parallel Mixed Methods Research Design 

This visualization illustrates the concurrent implementation of quantitative and qualitative 

methodologies, demonstrating data collection streams, integration points, and analytical convergence. 

The Figure 1 diagram employs a hierarchical structure with research phases represented vertically 

and methodological components horizontally. Color-coded pathways indicate data flow between 

components, with node size proportional to sample magnitude. Integration points are highlighted 

through connecting matrices showing methodological triangulation patterns. 

3.2. Measurement Instruments for Trust, Risk Perception, and Decision Quality 

Trust measurement employed a validated multidimensional scale incorporating cognitive, affective, 

and behavioral intention components. The 18-item instrument demonstrated strong psychometric 

properties with Cronbach's alpha values ranging from 0.84 to 0.92 across subscales. Risk perception 

assessment utilized a modified version of the Domain-Specific Risk-Taking (DOSPERT) scale 

adapted for financial technology contexts, capturing both risk perception and risk-taking 

propensities[11]. Decision quality evaluation implemented a multi-faceted approach addressing both 

process and outcome measures through objective financial performance metrics and subjective 

satisfaction indicators. 

Experimental simulations presented participants with standardized investment scenarios requiring 

interaction with AI advisory systems under controlled conditions. Performance metrics captured 

decision accuracy, time efficiency, and adherence to optimal strategies identified through financial 
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modeling. Physiological measurements including electrodermal activity and eye-tracking data 

supplemented self-report measures during experimental trials, providing objective indicators of 

cognitive load and attention allocation patterns during human-AI interactions[12]. 

Table 2 summarizes the measurement instruments employed across study constructs. 

Table 2: Measurement Instruments and Psychometric Properties 

Construct Instrument Items Scale Type 
Reliability 

(α) 

Test-Retest 

Reliability 

Initial Trust AIT-S 8 
7-point 

Likert 
0.89 0.76 

Sustained Trust AIST-L 12 
7-point 

Likert 
0.92 0.83 

Risk Perception 
M-

DOSPERT 
14 

5-point 

Likert 
0.84 0.79 

Decision 

Quality 
IDQM 10 Mixed 0.87 0.81 

Table 3 presents the correlation matrix between primary study variables, highlighting statistical 

relationships underlying subsequent analyses. 

Table 3: Correlation Matrix of Primary Study Variables 

Variable 1 2 3 4 5 6 7 

1. Initial Trust 1.00 - - - - - - 

2. Sustained Trust 0.64** 1.00 - - - - - 

3. Risk Perception -0.48** -0.37** 1.00 - - - - 

4. Decision Quality 0.52** 0.69** -0.41** 1.00 - - - 

5. Financial Literacy 0.29** 0.18* -0.33** 0.46** 1.00 - - 

6. Prior Experience 0.38** 0.43** -0.27** 0.33** 0.41** 1.00 - 

7. Age -0.31** -0.17* 0.24** -0.22** 0.13 0.28** 1.00 
*p < .05, **p < .01 

 

Figure 2: Structural Equation Model of Trust Formation Pathways 

This visualization depicts the structural equation modeling results showing causal pathways 

between antecedent variables, mediating trust constructs, and decision outcomes. The Figure 2 

diagram employs standardized path coefficients with significance levels indicated through varying 

line thickness. Latent variables are represented as ellipses while observed variables appear as 

rectangles. Model fit indices are displayed in the lower section with comparative values across 

competing theoretical frameworks. 
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3.3. Data Collection Strategies and Participant Demographics 

Data collection implemented a multi-phase strategy across digital and in-person channels. Digital 

recruitment utilized financial technology platforms, investor forums, and social media channels with 

targeted advertising based on investment activity indicators. In-person recruitment occurred through 

investment seminars, financial literacy workshops, and university alumni networks. Stratified 

sampling ensured adequate representation across demographic categories including age cohorts, 

investment experience levels, and technological familiarity[13-14]. 

The final participant sample consisted of 428 retail investors (57.2% male, 42.8% female) 

spanning age ranges from 22 to 68 years (M = 41.3, SD = 11.7). Educational attainment distribution 

included 34.6% with undergraduate degrees, 29.8% with graduate education, and 35.6% with other 

educational backgrounds. Investment experience levels varied substantially with 28.7% classified as 

novice investors (<2 years experience), 42.5% as intermediate investors (2-7 years experience), and 

28.8% as experienced investors (>7 years experience)[12]. 

Table 4 details participant demographic characteristics across key variables. 

Table 4: Participant Demographic Characteristics 

Characteristic Category Frequency Percentage 

Gender 
Male 245 57.2% 

Female 183 42.8% 

Age 

18-30 98 22.9% 

31-45 187 43.7% 

46-60 114 26.6% 

61+ 29 6.8% 

Education 

High School 62 14.5% 

Undergraduate 148 34.6% 

Graduate 127 29.8% 

Professional 91 21.1% 

 

Figure 3: Multivariate Analysis of Demographic Factors Influencing AI Advisory Acceptance 

This visualization presents a multidimensional scaling analysis showing clustering patterns among 

demographic variables related to AI advisory acceptance. The Figure 3 three-dimensional plot 

positions participants according to standardized factor scores across acceptance dimensions. Vector 

arrows indicate strength and direction of demographic variable influence on acceptance factors. Color 

gradients represent trust propensity levels while point size corresponds to investment experience 
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duration. Interactive regions highlight statistically significant demographic clusters exhibiting distinct 

behavioral response patterns. 

4. Trust Dynamics Between Retail Investors and AI Advisors 

4.1. Initial Trust Formation: Key Determinants and Barriers 

Initial trust establishment between retail investors and AI financial advisors demonstrated significant 

variance across demographic segments and technological experience profiles. Multivariate regression 

analysis identified institutional affiliation as the strongest predictor of initial trust (β = 0.68, p < 0.001), 

with AI systems operated by established financial institutions receiving substantially higher trust 

ratings than independent platforms. Perceived competence emerged as the second most influential 

factor (β = 0.57, p < 0.001), measured through technical performance metrics and accuracy of 

financial projections during initial interactions. The Table 5 survey data revealed technological 

familiarity moderates these relationships, with technology-proficient participants demonstrating 27.3% 

higher initial trust scores compared to technology-averse cohorts[15]. 

Barriers to initial trust formation centered on perceived risk dimensions, with privacy concerns (M 

= 4.82, SD = 0.76) and algorithm aversion (M = 4.56, SD = 0.89) rated highest among deterrent 

factors. Female participants exhibited significantly greater algorithm aversion (M = 4.78, SD = 0.72) 

compared to males (M = 4.31, SD = 0.94), t(426) = 5.67, p < 0.001. Qualitative interview data 

indicated anthropomorphic design elements functioned as trust facilitators for 68.7% of participants, 

with interface personalization capabilities enhancing initial engagement metrics by 34.1%. 

Table 5: Determinants of Initial Trust in AI Financial Advisors 

Factor Beta Coefficient p-value Relative Importance 

Institutional Affiliation 0.68 <0.001 1.00 

Perceived Competence 0.57 <0.001 0.84 

Interface Design 0.42 <0.001 0.62 

Technology Self-Efficacy 0.38 <0.001 0.56 

Prior AI Experience 0.36 <0.001 0.53 

 

Figure 4: Structural Path Model of Initial Trust Formation 

This visualization depicts the complex relationships between antecedent variables and initial trust 

formation through structural equation modeling. The Figure 4 diagram shows standardized path 

coefficients along directed edges connecting latent constructs represented as nodes. Mediating 

variables appear as diamond-shaped connectors while observed variables are shown as rectangular 

endpoints. Line thickness corresponds to coefficient magnitude while dashed lines indicate non-

Proceedings of  the 3rd International  Conference on Functional  Materials  and Civil  Engineering 
DOI:  10.54254/2755-2721/144/2025.21859 

75 



 

 

significant pathways. A heat map overlay illustrates interaction effects between demographic 

variables and trust determinant[16]. 

4.2. Trust Evolution Over Time: Longitudinal Patterns 

Longitudinal analysis tracking trust metrics across multiple interaction points revealed non-linear 

trust development trajectories. Trust metrics exhibited a characteristic V-shaped pattern across the 9-

month observation period, with initial trust scores (M = 3.87, SD = 0.92) declining during 

intermediate measurement points (Month 3: M = 3.41, SD = 1.04) before rebounding at final 

assessment (Month 9: M = 4.28, SD = 0.88)[17]. This pattern aligns with calibration theory 

predictions regarding technological trust formation. Correlation analysis between system 

performance metrics and trust scores demonstrated increasing alignment over time (r = 0.42 at 

baseline versus r = 0.79 at study conclusion), indicating progression from dispositional to experiential 

trust bases. 

Latent growth curve modeling identified distinct trust trajectory classes, with 58.2% of participants 

exhibiting gradual trust increases, 23.7% showing stable trust maintenance, and 18.1% demonstrating 

trust degradation patterns. Table 6-7 Demographic predictors of trajectory class membership included 

age (χ² = 18.76, p < 0.01), financial literacy (χ² = 23.41, p < 0.001), and prior fintech experience (χ² 

= 16.83, p < 0.01). 

Table 6: Trust Scores Across Measurement Time Points 

Participant Group Baseline Trust Month 3 Month 6 Month 9 Trust Velocity 

Technology Adopters 4.12 3.87 4.33 4.67 +0.061/month 

Technology Pragmatists 3.76 3.42 3.58 4.21 +0.050/month 

Technology Skeptics 3.41 2.84 2.73 3.12 -0.032/month 

Table 7: Factors Predicting Trust Trajectory Classification 

Predictor Variable Odds Ratio 95% CI p-value 

Age (>45 vs. <45) 0.67 0.54-0.83 <0.001 

Financial Literacy (High vs. Low) 1.86 1.42-2.43 <0.001 

Prior Fintech Experience 2.14 1.76-2.59 <0.001 

Risk Tolerance (High vs. Low) 1.47 1.18-1.83 <0.01 

 

Figure 5: Longitudinal Trust Trajectory Classes 

This visualization presents latent class growth modeling results showing distinct trust development 

patterns over the 9-month observation period. The Figure 5 graph displays mean trust scores along 

the y-axis with time points along the x-axis. Individual trajectories appear as semi-transparent lines 

grouped by color according to class membership. Confidence intervals surround the mean trajectory 

Proceedings of  the 3rd International  Conference on Functional  Materials  and Civil  Engineering 
DOI:  10.54254/2755-2721/144/2025.21859 

76 



 

 

lines for each class. Statistical parameters including growth rates, inflection points, and variance 

components appear in annotation boxes adjacent to each trajectory class. 

4.3. Explainability and Transparency in Building Sustainable Trust 

Experimental manipulations of system explainability features revealed significant impacts on trust 

sustainability metrics. High-explainability conditions produced substantially higher trust resilience 

scores (M = 4.76, SD = 0.64) compared to low-explainability conditions (M = 3.28, SD = 0.97), t(426) 

= 18.42, p < 0.001, d = 1.78. Explanatory depth analysis demonstrated non-linear relationships with 

trust variables, with moderate explanation complexity (Level 2) yielding optimal trust outcomes 

compared to both simplified (Level 1) and highly technical (Level 3) explanations [18]. 

Transparency regarding system limitations demonstrated particularly strong effects on trust 

calibration metrics. Participants Table 8 exposed to transparent limitation disclosures exhibited 

significantly more appropriate reliance patterns, with 76.4% demonstrating calibrated trust versus 

34.2% in non-disclosure conditions (χ² = 87.43, p < 0.001). Qualitative analysis identified four 

primary explanation types valued by users: process explanations, data source disclosures, confidence 

indicators, and limitation acknowledgments. 

Table 8: Impact of Explanation Types on Trust Dimensions 

Explanation Type 
Trust 

Accuracy 

Trust 

Depth 

Trust 

Resilience 

Trust 

Calibration 

Process Explanation +0.42* +0.67** +0.39* +0.28 

Data Source Disclosure +0.31* +0.45* +0.52** +0.48** 

Confidence Indicators +0.29* +0.33* +0.76** +0.83** 

Limitation 

Acknowledgment 
+0.18 +0.22 +0.87** +0.91** 

*p < .05, **p < .01 

 

Figure 6: Hierarchical Network Analysis of Explanation Preferences 

This Figure 6 visualization presents a complex network analysis of user explanation preferences 

across investor segments. The hierarchical clustering diagram positions explanation types as nodes 

with connection density indicating preference correlation. Node size represents preference magnitude 

while node color indicates investor segment membership. Statistical significance values appear as 

numerical annotations on connecting edges. The radial structure demonstrates centrality metrics for 

explanation features across the preference network with core explanatory elements positioned toward 

the center. 
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5. Decision Quality and Behavioral Outcomes 

5.1. Impact of AI Advisors on Investment Decision Quality 

Empirical analysis demonstrated AI advisory systems produced measurable improvements in 

decision quality metrics among retail investors. Comparative performance evaluation revealed AI-

advised portfolios outperformed self-directed portfolios by 7.2% on risk-adjusted returns (Sharpe 

ratio: 0.83 vs. 0.65, p < 0.01). Decision consistency measurements indicated reduced cognitive bias 

manifestation under AI guidance, with overconfidence bias decreasing by 41.3% (t(427) = 8.74, p < 

0.001) and disposition effect declining by 37.8% (t(427) = 7.92, p < 0.001). Temporal analysis of 

decision quality showed progressive improvements across repeated interactions, with decision error 

rates declining from 0.38 (SD = 0.09) during initial engagements to 0.17 (SD = 0.06) after six advisory 

sessions. Qualitative assessments identified knowledge transfer effects, with 72.3% of participants 

reporting enhanced understanding of portfolio construction principles through AI system interactions. 

5.2. Moderating Factors: Financial Literacy, Risk Tolerance, and Prior Experience 

Moderation analysis revealed significant interaction effects between investor characteristics and AI 

advisory efficacy. Financial literacy demonstrated pronounced moderation, with high-literacy 

participants exhibiting smaller performance differentials between AI-advised and self-directed 

conditions (ΔSharpe = 0.09) compared to low-literacy participants (ΔSharpe = 0.31). Risk tolerance 

moderated adoption patterns but not performance outcomes, with risk-seeking investors 

demonstrating 2.4x higher implementation rates of AI recommendations. Path analysis identified 

prior technological experience as a significant moderator of trust-performance relationships 

(interaction β = 0.41, p < 0.01). The investment horizon functioned as an unexpected moderator, with 

long-term investors (>5 year horizon) deriving substantially greater benefits from AI advisory (ROI 

improvement: 9.7%) compared to short-term investors (<1 year horizon, ROI improvement: 3.2%). 
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