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Abstract: Metal-organic frameworks (MOFs) are crystalline porous materials composed of 

metal clusters and organic linkers with tunable structures and large surface areas, making 

them ideal for gas storage, separation, and catalytic applications. The development of new 

MOFs and the screening of MOFs after synthesis are usually experimental, but the cost and 

time required for experiments are very large. Interestingly, computational simulations have 

become a powerful tool to accelerate the discovery of new MOFs structures. This study 

focuses on the computational design of MOFs based on secondary building units (SBUs) and 

explores the effects of different linkers on their geometry and properties. Using techniques 

such as density functional theory (DFT) and machine learning (ML), MOFs can be screened 

for great gas adsorption and storage properties. The results show that computational methods 

have the potential to predict and optimize MOFs structures, but they are still limited in 

accurately simulating dynamic environmental conditions and complex chemical reactions. 

These findings help advance the design of MOFs with tailored properties for specific 

industrial applications. 

Keywords: Metal-organic frameworks, Simulation, Secondary building units, Density 
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1. Introduction 

Metal-organic frameworks (MOFs) are porous materials with large surface areas and adjustable pore 

sizes made of metal-containing nodes and organic linkers. Due to their modular characteristic, MOFs 

have been widely studied for applications such as gas storage, separation, and catalysis. These 

materials are versatile due to their structure-property relationships, which can be customized by 

modifying metal clusters (e.g., Sc³⁺ cluster or Zr6 cluster) and organic linkers (e.g., carboxylates or 

imidazolates). This allows for fine-tuning of properties like pore size, surface area, and chemical 

reactivity for gas storage and separation [1]. 

Traditional trial-and-error synthesis methods are time-consuming and limited by researchers' 

chemical intuition. However, computational techniques offer a powerful alternative for predicting 

novel structures with desired properties. By systematically exploring different combinations of 

secondary building units (SBUs) and linkers, researchers can design MOFs that exhibit enhanced 

performance in specific applications such as gas adsorption, storage, and separation. Recent advances 

in computational methods have greatly accelerated the discovery of new MOFs structures. Molecular 
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simulations and machine learning are increasingly used to predict hypothetical MOFs properties, 

reducing the need for experimental trial-and-error. Large libraries of hypothetical MOFs have been 

assembled and screened using various software platforms to help researchers find promising 

candidates with desirable properties for specific applications. The computational method widely used 

in MOFs is machine learning (ML) and density functional theory (DFT). ML and DFT have become 

irreplaceable tools in data-driven methods for material design. Nevertheless, they have limitations in 

practical application. MOFs have a complex structure and usually need to be simplified in the 

computational model, such as simulating only local units or using smaller structural models. These 

simplifications may ignore long-range interactions or important physical and chemical properties, 

resulting in deviations from experimental results. In actual operation, the behavior of MOFs may be 

affected by environmental conditions (such as temperature, pressure, solvent effects), and these 

dynamic factors are usually not fully reflected in the computational model. In addition, it also lacks 

accurate predictions of chemical reactions. In some MOFs applications, such as catalytic reactions, 

complex chemical reaction networks are involved. Current computational methods still have 

limitations in dealing with reaction paths and reaction rates, especially in multi-step reactions, where 

the calculation results may deviate greatly from the experimental results. Reactive sites in MOFs, 

such as metal clusters or coordinatively unsaturated metal atoms, often have highly complex 

electronic structures [2]. Accurate simulation and prediction of these sites requires the use of a very 

high level of theory, which increases the difficulty. These shortcomings are problems that need to be 

solved in the future development of computational methods. 

This review summarizes the computational methods in the design of MOFs. Various 

computational techniques are explored, including DFT for electronic structure analysis and Machine 

Learning ML for data-driven predictions. Recent advancements in simulating gas adsorption (e.g., 

CO2, CH4) and separation processes within MOFs are highlighted, addressing key applications such 

as carbon capture and gas purification. The strengths and limitations of these methods are assessed, 

particularly in modeling complex, real-world conditions like varying temperature, pressure, and 

chemical reactivity. 

2. Overview 

2.1. The background of MOFs 

Through coordination bond bridging, metal ions or metal clusters and multi-dentate organic ligands 

self-assemble to form MOFs, also referred to as porous coordination polymers, a type of crystalline 

material with a periodic network structure. During the synthesis process, simple ligand metal clusters 

composed of metal ions and organic ligands are unsuitable for the production of network materials 

due to their insufficient stable coordination directionality. To form a secondary structural unit with 

rigidity, the most common MOFs material is to "couple" (coordinate) metal ions by carboxyl groups. 

It uses the carbon atom of the carboxylate group as an extension point to define the secondary 

structural unit. The types of MOFs materials can be controlled by choosing metal ions and organic 

ligands under suitable reaction conditions, allowing for the synthesis of a diverse array of MOFs 

materials through numerous combinations of organic ligands and metal ions [3]. At the same time, 

the addition of binary or even multi-organic ligands or metal ions in the reaction system provides 

unlimited possibilities for the synthesis of MOFs. Various functional building blocks can be chosen 

or engineered to directly synthesize MOFs materials with distinct functions. Various functional 

groups may be incorporated via post-synthetic modification to achieve specific performance 

regulation and to tailor MOFs materials for designated applications. The functions and usage 

scenarios of MOFs are also very extensive. Due to their large specific surface area and adjustable 

pore structure, MOFs have received widespread attention in the field of hydrogen storage. Among 
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them, materials such as Zn4O(1,4-benzenedicarboxylate)3·(N,N‘-dimethylformamide)8C6H5Cl and 

UiO-66 can store hydrogen under low temperature conditions. MOFs have an open pore structure and 

ultra-large specific surface area, which can promote the diffusion of pollutants in MOFs in water 

environments. By regulating the coordination unsaturated metal sites, Lewis acid-base sites, types of 

organic functional groups, pore size, surface electrical properties, etc. of MOFs, efficient, rapid and 

highly selective adsorption of target pollutants can be achieved [4]. 

2.2. The connection between computational method and MOFs design 

The synthesis process of MOFs is relatively simple, requiring only nodes, edges and templates to 

synthesize MOFs. Therefore, MOFs can be virtually generated with the help of computational 

methods, resulting in an unlimited number of hypothetical structures. While this diversity offers great 

potential, it also makes it difficult to screen for the best performance structures for MOFs applications. 

The cost and time of evaluating many structures experimentally are very large, but molecular 

simulation has emerged as a viable alternative. Various types of simulations, such as DFT, grand 

canonical Monte Carlo, and molecular dynamics simulations, have been widely used for this purpose 

[5]. Interpreting large amounts of simulation data is very complex, so effective methods are needed 

to analyze the data and extract meaningful insights from it. Although simulations contain a certain 

degree of error, they can evaluate structures faster and help discover new MOFs. The application of 

molecular simulations to the vast material space of MOFs still faces certain limitations.  

Data-driven methods, especially machine learning, have become an indispensable tool in materials 

design, successfully addressing these challenges. By identifying patterns from large data sets, 

machine learning models reveal various structure-property relationships, leading to a deeper 

understanding of material chemistry. These insights have been actively used to plan future 

experiments and design new materials with desired properties. Another emerging trend in materials 

design is the use of deep generative models, which can generate chemical structures without being 

restricted by a predefined search space or training database. In addition, new approaches such as ML 

potentials and cross-disciplinary knowledge transfer are gaining attention, and their combination with 

materials science shows great promise [6].  

3. Impact of Linker Variations in MOFs 

The geometry and connectivity of SBUs significantly influence the final topology and properties of 

MOFs [7]. Computational studies and experimental data reveal that variations in linkers and SBUs 

configurations can lead to diverse structural outcomes, affecting the porosity, stability, and 

functionality of the resulting MOFs. 

The synthesis of new MOFs skeletons comprises three primary components: nodes, edges, and 

templates. The geometric and chemical characteristics of SBUs and connecting nodes significantly 

influence the overall structure and efficacy of MOFs. First, Nam et al. proposed the dissociation of 

pre-synthesized MOFs by "Clip-Off" chemistry to extract functionalized SBUs. This method involves 

using truncation chemistry to completely decompose the SBUs and extract the SBUs from the pre-

existing MOFs. The original MOFs precursor is specifically designed to contain the target SBUs, 

which is connected only by cleavable bonds (in this case, olefin bonds). By cleaving these organic 

linkers through ozonolysis under reducing conditions, SBUs with aldehyde functional groups are 

released. These aldehyde-functionalized SBUs can then react with amines through dynamic covalent 

chemistry to construct new, rationally designed MOFs. The paper mentions the use of trimer metal 

clusters (Sc3+cluster) as SBUs to synthesize MOFs. The authors demonstrate that different metal 

clusters (independent variables) affect the topology and properties of the resulting MOFs. For 

example, Sc³⁺ cluster connected to a two-site linker form a network structure with MIL-126 (Fe), and 
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its properties such as pore size and chemical reactivity are determined by the properties of these metal 

clusters. In this case, the choice of specific metal ions (such as Sc³⁺) is an independent variable that 

affects the properties of the final material [8]. This shows how changes in the independent variable 

(the metal ions in the SBUs) can lead to changes in the computational design of the material structure 

and the resulting functionality [9]. This approach shows more possibilities for MOFs synthesis and 

the diversity of SBUs in synthesis. 

The geometric and chemical characteristics of the SBUs and connecting nodes significantly 

influence the overall structure and efficacy of the MOFs. The study of Li et al. constructed three 

MOFs with different topologies (sqc, scu and flu) by regulating the geometric structure of Zr6 cluster 

and Y6 cluster and the configuration of ligands. Synthesis and characterization of three distinct MOFs 

structures, utilizing the identical organic linker N,N,N′,N′-tetrakis(4-carboxyphenyl)-1,4-

phenylenediamine (tcppda) and analogous 8 Connect M6 clusters (M = Zr or Y). The three 

compounds, designated HIAM-402, HIAM-403, and HIAM-311, exhibit 4,8-linked sqc, scu, and flu 

topologies, respectively [8]. Different connections and geometries affect the framework stability and 

porosity of MOFs. Similarly, Han et al. studied the role of open metal sites in water adsorption. The 

water absorption characteristics can be substantially modified by altering the chemical composition 

of the metal sites and the water anchoring sites [10]. This provides a new idea for MOFs design. 

4. Computational Methods in MOF Synthesis 

Computation method has been widely used in the synthesis of MOFs and screening of suitable MOFs 

structures, which is an important tool for understanding and optimizing the synthesis and performance 

of MOFs. Nowadays, the most used methods are ML and DFT, which play different functions in the 

entire process of synthesizing and screening MOFs. 

Computational method is a very important tool in MOFs screening, mainly based on three criteria: 

gas adsorption capacity, separation efficiency and stability. In Shuai et al., ML was used for 

computational simulation of MOFs carbon capture. A least squares support vector machine model 

was employed to estimate CO2 uptake in MOFs, demonstrating superior predictive performance 

compared to alternative models. They integrated machine learning with conventional techniques, 

including Monte Carlo simulations, to enhance gas adsorption and separation efficacy in MOFs. The 

use of ML has made great progress in computational simulation. Compared with traditional 

experiments, ML can replicate extreme conditions that cannot be tested in conventional laboratory 

environments and can greatly improve the efficiency of screening. The advantage of ML over other 

methods is that it can effectively mine implicit and effective knowledge from big data. After analyzing 

these data, researchers can optimize MOFs design by adjusting pore size and metal doping [11]. In 

another study, Demire and Erucar combined molecular simulation with ML to study the separation 

performance of double-linked MOFs. Generally, there are thousands of MOFs for screening, and 

analyzing the characteristics of all MOFs is very arduous. ML can quickly process large amounts of 

data, especially for predicting the absorption of various gases. By analyzing the separation of 

greenhouse gases such as CF4, CH4, and N2, they demonstrated how ML models can accurately 

predict gas adsorption and selectivity based on surface area and Henry's constant [12]. An important 

indicator in screening MOFs is their stability, because stability affects the performance of MOFs in 

practice. Through ML models, structure-property relationships can be encoded and interpreted based 

on the representation of graphs and pore structures, and the stability of MOFs can be intuitively 

understood. In the study of Nandy et al, the stability of 1500 MOFs was analyzed, and the analysis 

using ML models took less than an hour, which was very fast [13]. 

DFT is a computational method that has significantly contributed to the comprehension of the 

electronic characteristics of Zr6 cluster. DFT simulations offer enhanced insight into the bonding 

characteristics between metal clusters and organic linkers. It provides an atomic-level understanding 
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of how these interactions affect the overall stability and functionality of the material. In Zr6-based 

MOFs, DFT simulations help predict how these clusters behave in a variety of chemical environments. 

This makes it easier to design MOFs with improved chemical stability and desired properties. By 

using DFT, researchers were able to optimize the metal-ligand coordination environment and produce 

MOFs with enhanced mechanical and thermal stability. This is particularly important in Zr6 cluster 

MOFs, where the interactions between metal nodes and organic linkers can determine the robustness 

of the material. For example, in computational models of CO2 adsorption, DFT was crucial in 

evaluating the interactions between Zr6 cluster nodes and CO2 molecules [14]. This is important in 

being able to design more efficient adsorption materials. 

5. Conclusion 

This study demonstrates the efficacy of a computer-aided approach in designing different SBUs based 

MOFs structures. Computational methods can screen the best MOFs through diverse structural 

outcomes, affecting the porosity, stability, and functionality. This method offers a robust mechanism 

for expediting the identification of novel MOFs with advantageous characteristics, aiding the 

continuous advancement of sophisticated materials for separation and storage applications. 

Nevertheless, there are limitations to simulating or synthesizing MOFs structures through 

computational methods. After many MOFs are synthesized, some careful screening is required. DFT 

and ML can perform data simulation and calculate pore spacing, but they rely on large data sets. If 

the data is insufficient or biased, its accuracy may be reduced. Future research should be committed 

to improving the integration of experimental and computational data to improve the accuracy and 

efficiency of predictions. In addition, incorporating dynamic conditions and solvent effects in 

simulations can produce more reliable results and promote the development of MOFs tailored for 

various industrial applications. By overcoming these obstacles and continuing to utilize 

computational techniques, researchers will be able to further advance MOFs design and develop 

materials. 
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