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Abstract. In large-scale data analysis, efficient Top-K query processing is critical for numerous 

applications in science, industry, and society. Traditional approaches often involve substantial 

data transfer and computational overhead, making it difficult to meet the scalability and 

efficiency demands of modern datasets. This paper proposes a GPU-accelerated Top-K query 

processing method that integrates data compression and pre-filtering techniques to address these 

challenges. By partitioning and compressing data on the host side, it alleviates common PCIe 

bottlenecks in heterogeneous computing environments. A metadata-driven pre-filtering 

technique further reduces the data volume processed on the GPU, significantly improving query 

performance, particularly when handling anti-correlated datasets. Experimental results 
demonstrate that this method markedly reduces data transfer and processing time, confirming its 

effectiveness in enhancing the efficiency and scalability of Top-K query processing compared 

to existing methods. 
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1.  Introduction 

Data-driven decision-making is becoming increasingly vital across various domains[1]. Top-K queries, 
which retrieve the top k tuples from a dataset using a user-defined function, offer a solution to identifying 
interesting objects from large databases. These queries are widely applied in information retrieval, high-
dimensional data processing, and anomaly detection [2,3]. However, processing massive datasets 
presents significant challenges. To address this, systems are continuously adapted for modern hardware 
[4], including GPUs, which excel at parallel processing and can enhance throughput and query  latency 
[5,6]. Previous studies have shown the potential of GPUs in accelerating filtering [7] and selection 
operations [8], with key considerations such as coalescing memory access and minimizing thread 

divergence playing critical roles in optimization efforts. 
The typical approach to GPU-accelerated Top-K queries involves three steps [9]: transferring data to 

the GPU, applying sorting or k-selection algorithms, and returning results to the CPU. Score aggregation 
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dominates execution time, and as data grows, the cost of data movement—especially over PCIe—
becomes a major bottleneck [10]. Various methods, such as early termination and hierarchical strategies, 
aim to reduce data transfers [11,12], but traditional techniques like random access indexing are 
inefficient on GPUs [10]. While these methods can reduce query latency, they often increase tuple 

evaluation times and struggle with complex queries involving numerous attributes [10]. 
To overcome these limitations, this paper introduces a compression-based Top-K query processing 

algorithm. By physically partitioning and compressing data before transferring it to the GPU, the 
algorithm reduces data transfer time. A pre-filtering step uses block-level statistics to filter irrelevant 
data, improving query efficiency, especially for anti-correlated datasets [10]. 

2.  Compression Top-K query algorithm (CTK) 

The CTK algorithm efficiently handles Top-K queries on large datasets by combining data compression 
and GPU acceleration. Data is first partitioned and compressed on the CPU, with key statistics calculated. 
Compressed data and metadata are transferred to the GPU, where metadata guides the filtering process 
to reduce unnecessary data transfers. On the GPU, filtered blocks are decompressed, and query 
conditions are applied to extract relevant tuples. The Top-K result set is dynamically updated, and the 
final results are output. By integrating compression, GPU acceleration, and prefiltering, CTK minimizes 

overhead and significantly improves query efficiency. 

2.1.  Compression Strategy on CPU 
On the CPU side, the data is processed in blocks, with each block containing multiple entries from the 

dataset, each consisting of several attributes (e.g., 𝐴1, 𝐴2, … , 𝐴𝑛 ). For each block, the algorithm 
calculates key statistics for each attribute, such as the maximum and minimum values, which will be 
used in the prefiltering stage. The blocks are then compressed, and both the compressed data and 
metadata (statistical information) are stored for quick access and transmission. Figure 1 illustrates the 
compression process, where the minimum value is used as a reference for efficient compression.  

 

Figure 1. Data compression process with minimum value reference 

Assuming the tuples have three attributes and are divided into two blocks, the algorithm calculates 
the maximum and minimum values for each attribute. It then determines the number of bits required to 
represent the values within the range (e.g., a range of 8 requires 4 bits). Each value is adjusted by 
subtracting the minimum to reduce the range and then converted into binary based on the number of bits 

needed. The binary data is then merged and stored in a compressed format, reducing storage space and 
facilitating efficient transmission and processing. 

To enhance CPU-side data compression, this paper uses multithreading and memory optimization. 
Data is divided into 256-sized blocks to align with GPU thread blocks, optimizing data transfer and 
computation. Block-based processing reduces transmission latency and balances workload. Multiple 
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CPU threads handle each block in parallel, calculating the maximum and minimum attribute values. The 
minimum value is used as a reference for compression, reducing attribute ranges and storage needs. 

2.2.  Pre-filtering And Decompression Strategy 

On the GPU, each compressed data block first undergoes prefiltering, which significantly reduces the 
amount of data that needs to be decompressed and processed. As shown in Figure 2, the prefiltering 
stage uses statistical information stored in the metadata (e.g., the minimum value and the number of bits 
representing the maximum difference for each attribute) to determine whether the current data block 
may contain entries that meet the query criteria. If the metadata indicates that a data block may contain 
qualifying entries (such as B1 in Figure 2), the block is further decompressed and processed. This 

prefiltering step effectively reduces the number of fully decompressed data blocks, saving valuable 
computational resources and processing time.Asynchronous processing decouples computation from 
data transfer, allowing parallel execution. CUDA’s asynchronous data transfer supports simultaneous 
data transfer and task execution without blocking. After prefiltered blocks are decompressed on the GPU, 
they are processed based on query conditions to determine the Top-K results. This pipelined approach 
avoids high-latency memory transactions and global updates by using shared memory, reducing 
performance overhead. 

 

Figure 2. Prefilter Process 

2.3.  Top-K Query on GPU 
The GPU-based Top-K query computation is designed to efficiently determine the final Top-K results 
from prefiltered and decompressed data blocks. The process is divided into multiple stages. First, GPU 
threads perform parallel score calculations for each entry in the decompressed data blocks, based on the 

query conditions, such as attribute ranges or composite functions. Each thread processes different entries 
independently, significantly speeding up score computation. Next, using the GPU's shared memory, 
each thread block calculates the local Top-K elements within its block using an optimized Bitonic Top-
K algorithm [13]. This algorithm leverages fast shared memory access, reducing synchronization 
overhead and improving local computation efficiency. Each block independently determines its Top-K 
entries, minimizing the complexity of global sorting. Finally, the local Top-K results from different 
blocks are merged into the GPU's global memory. This merging is done in parallel, with tasks distributed 
across thread blocks to maximize GPU utilization. After several iterations, the system efficiently 

produces the global Top-K results, ensuring high efficiency in query processing. 

3.  Experimental Evaluation 

In the experimental evaluation, the state-of-the-art GPU-accelerated Top-K query algorithm, GTA, 
combined with preprocessing techniques, was used as the baseline algorithm [10]. The hardware 
platform includes a single NVIDIA TU102 GPU and a system with an Intel Xeon Silver 4208 CPU 

(Skylake architecture, 8 cores, supporting 2 hardware threads). All algorithms were implemented and 
executed using C++ and the CUDA 11.0 environment. 

The experimental design follows methods from related studies [12,14,15], using synthetic datasets 
with three data distribution types (correlated, independent, and anti-correlated) generated by a standard 
dataset generator. The dataset includes relational data with 8 attributes and 512 million tuples, totaling 
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about 16 GB. The experiments tested the impact of varying the number of query attributes (𝑑 ∈ [2,8]) 
and Top-K size ( 𝑘 ∈ [4,8,16,32,64,128,256] ) on algorithm performance. Additionally, for the 
independent distribution dataset, execution time was measured in detail for different preference vectors, 
with results shown in Table 1. 

Table 1. Query weight values based on preference vector. 

𝑄0 (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 

𝑄1 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) 

𝑄2 (0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) 

𝑄3 (0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1) 

𝑄4 (0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.3, 0.4) 

3.1.  Preprocess Comparison 

Figure 3 shows the initialization phase cost, focusing on data preprocessing time. The results indicate 
that CTK incurs 1.6 to 1.9 times higher initialization overhead compared to GTA. However, despite this, 
CTK delivers about 10 times faster query latency than GTA, as explored in later chapters. 

 

Figure 3. Latency of data preprocess to ready for to GPU 

CTK's compression strategy reduces data transferred from the CPU to the GPU by about 95%, 
completing the transfer in a single PCIe pass. In contrast, GTA transfers all raw data to the GPU for 
preprocessing, sends it back to the CPU for filtering, and then returns it to the GPU for query processing, 
causing significant communication overhead and processing delays. While CTK's CPU preprocessing 
time is longer, it minimizes overall computation time by reducing PCIe transfers. For large-scale datasets, 
CTK's design effectively cuts transmission overhead and boosts processing performance, ensuring 

efficient data preprocessing and query response. 

3.2.  Variable Preference Vectors 
Figure 4 shows the performance of CTK and GTA across varying attribute numbers. While CTK’s query 
latency increases with more attributes, it remains stable, showing strong adaptability. For simpler queries 
(e.g., Q0, Q1, Q2), CTK is about 10 times faster than GTA, thanks to its prefiltering stage that quickly 

eliminates irrelevant data. On the other hand, CTK's prefiltering becomes less efficient due to more 
attribute conditions, leading to higher computational overhead and increased latency. 

Figure 5 shows the performance trend of CTK and GTA with varying query result sizes (K values). 
As K increases, query latency rises, but CTK maintains a smoother increase and is about 10 times faster 
than GTA for all K values. CTK’s superior performance comes from its compression and prefiltering 
strategies, which reduce the data volume transferred and processed. By filtering irrelevant data early, 
CTK minimizes transmission and computational overhead, optimizing resource use, especially in large-
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scale queries. In contrast, GTA faces higher latency as K increases, making it less efficient for large 
datasets. CTK’s consistent performance makes it ideal for tasks like recommendation systems and real-
time data analysis. 

 

 

 

Figure 4. The impact of the number of attributes 

on query latency. 

 
Figure 5. The impact of K value on query 

latency. 

3.3.  Device Memory Query Processing 
Figure 6 shows the query latency of different algorithms in the GPU device memory for varying data 
distributions. This not only reflects the efficiency of each algorithm in utilizing GPU resources but also, 
through ablation experiments, demonstrates the stability and adaptability of the algorithms. 

 

Figure 6. The impact of data distribution on device memory on query latency 

When handling correlated and independent data, the CTK algorithm achieves exceptionally high 
efficiency, largely due to the sorting operation during compression, making it about 10 times faster than 
GTA in average processing speed. For these data types, CTK's compression and prefiltering mechanisms 
work efficiently to filter and process data, significantly reducing processing time. However, with anti-

correlated data, CTK faces challenges. The large variation in attribute values lowers compression 
efficiency, and the prefiltering mechanism becomes less effective, requiring multiple filtering passes 
due to the significant differences in correlation. Despite these challenges, CTK remains approximately 
1.28 times faster than GTA, demonstrating solid performance across diverse data distributions. CTK 
also shows high stability and adaptability when processing varying numbers of attributes and K values. 
As the K value increases, CTK's query latency grows more gradually, particularly in independent and 
anti-correlated data scenarios. This stability is attributed to the Bitonic Top-K algorithm, which helps 

CTK maintain efficiency even with varying K values. Overall, CTK not only excels with correlated and 
independent data but also shows strong adaptability in more complex, anti-correlated data scenarios. 
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4.  Conclution 

In modern scientific, industrial, and societal domains, data-driven decision-making is crucial. Top-K 
queries, widely used in information retrieval, anomaly detection, and visualization, help identify key 
objects in large databases. However, handling massive datasets presents challenges, including frequent 

PCIe transfers and inefficiencies with anti-correlated data. We propose the CTK algorithm, which 
processes Top-K queries efficiently by using data compression and GPU acceleration. Compressing data 
before GPU transmission reduces transfer volume by 95%, and a prefiltering step eliminates irrelevant 
data blocks, optimizing resource use. Experiments show CTK outperforms existing GPU-based 
algorithms by 1.28 to 10 times across various data distributions. While CTK offers major improvements, 
future work could enhance compression and prefiltering for complex datasets, and explore hybrid CPU-
GPU methods to further boost performance. CTK represents a significant step forward in Top-K query 
processing, especially for large-scale data environments. 
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