

Game Pathfinding System Design based on A-Star

Pathfinding Algorithm

Honghao Bai

The School of Integrated Circuits, Huazhong University of Science and Technology,
Wuhan, 430074, China

u202014619@alumni.hust.edu.cn

Abstract. Pathfinding systems are used in many applications today, including navigation

systems, autonomous driving systems, and games. The core part of the pathfinding system is the

pathfinding algorithm, A Star pathfinding algorithm is a kind of efficient pathfinding algorithm,

which is especially suitable for the design of game pathfinding. In this paper, based on the A Star

algorithm, Godot game engine and C Sharp language are used to write a pathfinding program.

After comparing different pathfinding methods and the estimated function, the A Star algorithm

is improved according to the needs of the actual game pathfinding system, so that the pathfinding

program can avoid crossing the obstacles through the diagonal by searching the surrounding

obstacles and excluding unavailable nodes, and find a shorter path by using the Euclidean

distance estimated function. The program applies the improved A Star algorithm in practice, and

finally can complete the basic pathfinding needed in the game, which is practical for the design

of the game's pathfinding system.

Keywords: Pathfinding system, A star algorithm, estimated function.

1. Introduction

Pathfinding algorithms play a crucial role in the process of route planning and navigation for objects,
and have been involved in autonomous driving systems, robot navigation systems and games. In this
paper, the example of the pathfinding system in games will be taken to find the optimal pathfinding
algorithm to find the shortest path while minimizing the time consumed.

In order to realize efficient path finding, there have been many researches on pathfinding algorithms.

Dijkstra's algorithm, which was first published in 1959, is a traditional pathfinding algorithm, which
starts from the starting point and searches for the nearest unsearched accessible phases to the starting
point, until the end point is searched. The algorithm has been applied in the present, and in 2014 Chen
et al. constructed a vehicle evacuation optimal route model using Dijkstra's algorithm [1]. The algorithm
has also been optimized many times nowadays. In 2012 Shu-Xi improved some of the defects of the
algorithm, optimized the exit mechanism, and improved the operation efficiency [2].

Another algorithm to get higher running speed, starting from the starting point and selecting only the
node with the shortest predicted distance to the end point each time until it reaches the end point is the

Best First Search algorithm. Although the running speed is extremely fast, due to the poor accuracy of
its prediction function, it is almost impossible to get the shortest path in complex environments.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

57

A Star algorithm is a path finding algorithm that combines the advantages of the two algorithms. It
starts from the starting point, searches and selects neighboring nodes with the smallest cost until the end
point is found. The cost of each node consists of the sum of two parts, one part is the actual distance
cost based on Dijkstra's algorithm, and the other part is the predicted distance cost based on the Best

First Search algorithm. A Star algorithm is extremely widely used in reality. In the field of robot
navigation system, Duchoň et al. designed a path planning system for mobile robot based on A Star
algorithm in 2014, and Ma designed a robot path planning and obstacle avoidance system based on A
Star algorithm in 2024, and in the same year, Zhang et al. introduced global obstacle information and
local obstacle information and U-shaped "trap" region to optimize the robot A Star algorithm [3-5]. In
the field of vehicle navigation system, Yin et al. proposed a vehicle navigation system completely based
on A Star algorithm in 2013, and Erke et al. optimized the A Star algorithm and designed an autonomous
land vehicles navigation system based on A Star algorithm in 2020 [6, 7]. In the field of vessel path

planning, in 2019 Liu et al. improved the A Star algorithm for vessel path planning [8].
And in game design, a game object needs to consider various obstacles and find the shortest path

from the starting point to the end point, which also requires path finding algorithms. In 2018 Permana
et al. compared multiple paths finding algorithms in game design and concludes that the A Star path
finding algorithm is the most appropriate path finding algorithm [9]. In 2022 Lawande et al. also used
the Unity Game Engine to test different path finding algorithms and in the conclusion A Star algorithm
is lower than the Best First Search algorithm in terms of running speed but has a better ability to cope

with obstacles [10].
The A Star algorithm is not completely without flaws, due to the combination of Dijkstra's algorithm

and the Best First Search algorithm in the A Star algorithm, the A Star algorithm is neither the fastest
algorithm, nor is it guaranteed to find the shortest distance. However, for the game route planning, both
have the same important status, and A Star algorithm can take both into account, compared with other
algorithms is undoubtedly more suitable. Therefore, this paper will be based on the Godot game engine,
using C Sharp language to design an A Star routing system in the game route planning and research how

to optimize the system.

2. Methodology

2.1. Data source

Using the Godot game engine, a test program written in C Sharp can generate a map of a certain size
and randomly generate obstacles and a starting point and find the path to other points and record the
length of the path, using the mouse to set the end point and display its path and using buttons to switch
between different path forms and pathfinding prediction functions.

The program can obtain the route data from the starting point to different points, and obtain multiple
sets of data by changing the different pathfinding estimation functions (Euclidean distance and
Manhattan distance). In this paper, a 5x5 size waypoint was selected in the upper left corner of the entire

map for path length data collection. At the same time, this paper also collects path images using different
path forms and pathfinding functions.

2.2. Test standard
According to the actual path design requirements, the response ability of different path forms to
obstacles and the path length are compared, and the most suitable path form is found.

The path lengths of the two estimation function algorithms, Euclidean distance and Manhattan
distance, are compared and analyzed, and the optimal estimation function algorithm is found.

2.3. Method introduction
The whole pathfinding system uses the A Star algorithm as the core algorithm, and the A Star algorithm
is an excellent pathfinding algorithm, which mainly includes the following steps:

Step 1 is to split the whole map into multiple nodes.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

58

Step 2 is to start from the starting point by adding the passable nodes around the starting point,
ignoring obstacles, adding to the open list, and setting the starting point to their parent.

Step 3 is to add the starting point to the close list.
Step 4 is to calculate the cost F of all nodes, and the cost calculation formula is shown in the following

equation (1)

 𝐹 = 𝐺 + 𝐻 (1)

where G is the actual path movement cost function, in order to detect the length of the path passed, G of
each node is the G value of its parent node plus the distance from its parent node to the node, and H is
the estimated function from the node to the end point.

Step 5 is to find the node with the least cost in the open list, as a new starting point, and look for the
nodes in proper order that can pass around it, ignoring the obstacles and the nodes in the close list. If it

is not in the open list, it should be put into the open list and set its parent as the node. If it is already in
the open list, its new cost and the original cost size should be compared, and if it is smaller than the
original, its cost should be changed to the new price, and its parent node should be changed to the new
starting node, otherwise, no action is taken.

Step 6 is to repeat steps 3 to 5 until the end is added to the start list.
Step 7 is to start from the end point and keep looking for the parent until finding the starting point to

get the path.
The estimation function H uses the Euclidean distance and the Manhattan distance. The Euclidean

distance is calculated as shown in equation (2), and the Manhattan distance is calculated as shown in
equation (3).

 𝐻 = ((𝑋1 −𝑋2)
2
+ (𝑌1− 𝑌2)

2
)
1

2 (2)

 𝐻 = |𝑋1 −𝑋2| + |𝑌1 −𝑌2| (3)

The Euclidean distance is the shortest distance that allows movement in all directions and is more
complex to calculate, while the Manhattan distance is the shortest distance that only allows movement
in the horizontal and vertical directions, and is simpler to calculate.

In addition, the algorithm is improved to meet the actual design requirements by detecting the
surrounding obstacles and setting markers for the impassable diagonal nodes before steps 2 and 5, and
not adding them to the on list in steps 2 and 5.

3. Results and discussion

3.1. Pathfinding algorithm improvement

First completed the preparation of the basic program, the program can complete the basic functions
required above and its software interface is shown in figure 1 below. The black part is the obstacle and
the dot is the moving object. The upper number displays the acquired path length.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

59

Figure 1. Software Basic Interface

When the mouse clicks on any non-obstacle part, a path is generated according to the algorithm, as
shown in figure 2 below, with the green part as the path.

Figure 2. First generation of roadmap

In the basic design of the pathfinding algorithm, the basic principle of A Star algorithm was firstly
adopted for the program design, and Godot game engine and C Sharp were used to complete the writing

of the whole test software, which can randomly generate obstacles and generate a moving object, and
through the pathfinding algorithm. The distance from the object to the mouse click position was
calculated and the specific path was displayed on the screen. However, the path found by the most basic
pathfinding algorithm is not the required path, and the path should not be able to cross the diagonal in
the middle when there are obstacles above and to the left or above and to the right or below and to the
left or below and to the right of the moving object at the same time, but the basic A Star algorithm cannot
realize the requirement and needs to be improved.

Therefore, in order to solve the problem, a simple improvement was firstly proposed. It is disallowing

diagonal movement of paths and detecting only the four directions of top, bottom, left and right in path
detection, which can completely circumvent the problem of diagonal crossing of obstacles as shown in
figure 3 below, but this time it makes the length of the paths significantly longer, which is contrary to
the need of finding shorter paths.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

60

Figure 3. Roadmap obtained by prohibiting diagonal movement

There exists a more effective improvement method that does not include diagonal nodes caught by
obstacles when searching for open nodes, and after improving the method, the program can find a path
while avoiding the problem of crossing obstacles diagonally as shown in figure 4 below. Compared with
the previous improved method, the steps are more complicated and the performance consumption is
higher, but a shorter path can be found, and this paper finally concludes that this improved method is
superior and has value for use.

Figure 4. Roadmap with improved algorithm

3.2. Estimated function selection
In this paper, based on the improved A Star algorithm mentioned above, the two estimated functions
were tested separately, so that the software outputs all the path lengths within the 5x5 region in the upper

left corner. First, the path lengths using the Euclidean distance were tested as shown in table 1 below,
where -1 means this node is an obstacle or there is no path, and obstacle density is one obstacle per 24
nodes.

Table 1. Table of path lengths obtained from Euclidean distances.

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑦1 -1 18 17 16 15

𝑦2 19 18 -1 -1 15

𝑦3 20 18 17 -1 15

𝑦4 19 19 17 16 15

𝑦5 19 18 18 16 15

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

61

After that, the path lengths using Manhattan distance were tested as shown in table 2.

Table 2. Table of path lengths obtained from Manhattan distances.

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑦1 -1 21 20 19 18

𝑦2 21 21 -1 -1 18

𝑦3 19 18 17 -1 15

𝑦4 19 18 17 16 15

𝑦5 19 18 18 16 15

After comparing the two sets of data, it is found that both have the same path lengths obtained for

some of the coordinates. In coordinates where some of the paths have different lengths, Manhattan
distance is a little shorter in (𝑥1, 𝑦3) and (𝑥2, 𝑦4), while Euclidean distance is much shorter in (𝑥1, 𝑦2),
(𝑥2, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦1), (𝑥4, 𝑦1), (𝑥5, 𝑦1) and (𝑥5, 𝑦2).

The result has shown that Euclidean distance can get much shorter path in more coordinates and it
seems to be much better than Manhattan distance. Since the estimated function is only a prediction, the

final cost synthesized is not accurate, and when comparing the cost-size relationship, the path found
may not be the shortest due to this error. According to the results of software testing, the Euclidean
distance is better than the Manhattan distance to avoid this problem, and the Euclidean distance should
be chosen as the optimized function when performance allows.

4. Conclusion

In this paper, after completing the writing of the routing system program using C Sharp and Godot game
engine, the routing algorithm as well as the whole routing program were analysed and optimized
according to the routing results. After discovering the defects of A Star algorithm in the actual program
design, the algorithm was improved to prevent the occurrence of the error that the route crosses the
obstacles through the diagonal by detecting the obstacles. In addition, comparing different estimated
functions, and through the path length data output by the program, it was found that the Euclidean
distance was more suitable as the estimated function than the Manhattan distance, and the Euclidean

distance was finally adopted as the estimated function in this pathfinding system. After completing the
above series of improvements, the design and writing of the whole pathfinding system program is
completed, which can realize randomly generating obstacles and generating a moving object, and find
the path from the object to the mouse click position and display the path on the screen. The program
utilizes the improved A Star algorithm, which is of practical significance for the pathfinding system in
the game. When this system is applied to game design in the future, its pathfinding algorithm is still
optimized for improvement in the face of more complex environments, including the optimization of
pathfinding speed and the optimization of the ability to cope with complex terrain.

References

[1] Chen Y, Shen S, Chen T, et al. 2014 Path optimization study for vehicles evacuation based on
Dijkstra algorithm. Procedia Engineering, 71, 159-165.

[2] Shu X W 2012 The improved dijkstra's shortest path algorithm and its application. Procedia

Engineering, 29, 1186-1190.
[3] Duchoň F, Babinec A, Kajan M, et al. 2014 Path planning with modified a star algorithm for a

mobile robot. Procedia engineering, 96, 59-69.
[4] Ma X 2024 Robot path planning and obstacle avoidance based on a combination of hybrid A-star

algorithm and time-elastic-band algorithm. AIP Publishing, 3144(1).
[5] Zhang Y, Dong B, Zhang L, et al. 2024 Global path planning for mobile robots based on improved

A Star algorithm. Research Square.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

62

[6] Yin W, Yang X 2013 A totally Astar-based multi-path algorithm for the recognition of reasonable
route sets in vehicle navigation systems. Procedia-Social and Behavioral Sciences, 96, 1069-
1078.

[7] Erke S, Bin D, Yiming N, et al. 2020 An improved A-Star based path planning algorithm for

autonomous land vehicles, International Journal of Advanced Robotic Systems, 17(5).
[8] Liu C, Mao Q, Chu X, et al. 2019 An improved A-star algorithm considering water current, traffic

separation and berthing for vessel path planning. Applied Sciences, 9(6), 1057.
[9] Permana S H, Bintoro K Y, Arifitama B, et al. 2018 Comparative analysis of pathfinding

algorithms A star, dijkstra, and bfs on maze runner game. IJISTECH (International J. Inf. Syst.
Technol), 1(2), 1.

[10] Lawande S R, Jasmine G, Anbarasi J and Izhar L I 2022 A Systematic Review and Analysis of
Intelligence-Based Pathfinding Algorithms in the Field of Video Games. Appl. Sci, 12, 5499.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0067

63

