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Abstract. Accurate detection of neurofibromas is crucial for quantitative monitoring of tumor
progression and surgical assessment. This paper proposes a method for neurofibroma detection
in whole-body magnetic resonance imaging (WBMRI) using joint imaging genomics and
ensemble learning. Firstly, we enhance texture features through a combination of image
sharpening, filtering, brightness adjustment, and contrast enhancement. Then, we employ a
weighted boxes fusion (WBF) technique based on test-time augmentation (TTA) under a single
model and further integrate multiple models using the dual fusion approach of TTA and WBF.
For segmentation, we utilize minimum bounding boxes based on segmentation masks for
position calibration. Finally, false positive tumor regions are further eliminated through imaging
genomics features. The experimental MRI data is obtained from collaboration between Harvard
Medical School and domestic tertiary hospitals, comprising 158 cases with a total of 1380 tumors.
Five-fold cross-validation is conducted with segmentation annotations completed by domain
experts. Compared to the best results of single models, our proposed method achieves a 10.1%
increase in average precision (AP), 7.8% increase in sensitivity, reduction of average false
positives to 3.58, a decrease of 17.68, and an 8.5% improvement in competitive performance
metric (CPM). This method effectively enhances the accuracy of neurofibroma detection and is
applicable to detecting tumors and lesions in other medical imaging applications.

Keywords: Ensemble Learning, Medical Image Detection, Imaging Genomics, Deep Learning, Object
Detection.

1. Introduction
Neurofibromas can be detected, segmented, and quantified through whole-body magnetic resonance
imaging (WBMRI). There are significant morphological differences among individuals, making
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automatic detection and segmentation a considerable challenge. Widely applied medical image lesion
detection primarily includes the detection of pulmonary nodules/lesions [1][2], breast lesions [3][4],
brain tumors [5][6], polyps [7][8], and lymph nodes [9][10]. Huang et al. [11] integrated three target
detection models, Faster R-CNN, R-FCN, and SSD, achieving the best performance in the COCO
dataset’s object detection challenge of that year. Xu et al. [12] proposed an object detection framework
based on ensemble deep learning models. Sirazitdinov et al. [13] integrated RetinaNet and Mask R-CNN
models to locate and detect pneumonia areas in X-rays. Jain et al. [14] applied ensemble learning to
early brain tumor detection. Sreelakshmi et al. [15] introduced an encoder-decoder-based ensemble
learning method for medical imaging.

Precision diagnosis and auxiliary medical assistance based on imaging genomics are gradually
becoming powerful tools in smart medicine [16]. The automatic extraction of convolutional features
from medical images by CNN models to serve as imaging genomics features has also become possible
[17]. However, for tumors or lesion areas with significant heterogeneous differences, there is no unified
deep learning model that can fully extract features. In such cases, manually designed and constructed
(hand-crafted) imaging genomics features have superior and irreplaceable advantages. To the best of
our knowledge from domestic and international technical literature, there are no papers specifically
addressing neurofibroma detection in WBMRI. This paper proposes a method for neurofibroma
detection in WBMRI using joint imaging genomics and ensemble learning, making the following
contributions: (1) Proposing an image enhancement method that combines image sharpening, filtering,
brightness adjustment, and contrast adjustment to further highlight the texture features of neurofibromas
and surrounding tissues in MRI. (2) Since real-time requirements are not essential for medical detection
of neurofibromas, integrating various advanced segmentation and object detection algorithms through
ensemble learning. This involves using a weighted boxes fusion (WBF) technique based on test-time
augmentation (TTA) under a single model and further integrating multiple models using the dual fusion
approach of TTA and WBF. For segmentation, minimum bounding boxes based on segmentation masks
are utilized for position calibration. (3) Utilizing multidimensional features obtained from imaging
genomics for tumor heterogeneity evaluation to effectively remove false positive tumor areas during
post-processing.

This method can effectively enhance the accuracy of neurofibroma detection and is also applicable
to detecting tumor and lesion areas in other medical images.

2. Research Method

2.1. System Overview
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Figure 1. Model Generation Framework. (a) Training independent detection and segmentation models;
(b) Training false positive removal classification models.
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Figure 2. Ensemble Learning Prediction Framework

The process of neurofibroma detection in WBMRI includes training and prediction. The training process,
as shown in Figure 1, involves the independent training of multiple target detection models and
segmentation models for ensemble learning, training of false positive removal classification models, and
all training processes can be conducted in parallel. For medical image target detection, 2D space is more
convenient and efficient, while for segmentation processing, 3D space provides greater accuracy and
also supplies 3D data for false positive removal. Prediction, as illustrated in Figure 2, involves
integrating and merging the predictions of independent detection and segmentation models. The image
enhancement, ensemble learning strategies, and false positive removal algorithms utilizing imaging
genomics features are described in Sections 1.2, 1.3, and 1.4, respectively.

2.2. Image Enhancement
Image enhancement can further highlight the structural details and texture features of body tissues and
lesion areas in WBMRI, providing more training basis for deep learning. The algorithm process is
described as follows:

(1) Input the original MRI grayscale image IM;

(2) Set the total number of times N for operations including image sharpening, median filtering,
brightness adjustment, and contrast adjustment, with the current count n set to 1;

(3) Set the minimum and maximum values of parameters lightness and alpha for image sharpening,
as well as the increment value for single transformation;

(4) Set the minimum and maximum values of parameter k for median filtering, as well as the
increment value for single transformation;

(5) Set the minimum and maximum values of parameter add for brightness adjustment, as well as the
increment value for single transformation;

(6) Set the minimum and maximum values of parameter alpha for contrast adjustment, as well as the
increment value for single transformation;

(7) Generate all combination values based on the minimum and maximum values of parameters and
the increment value, with a total of M combinations, and set the current index i to 1;

(8) Retrieve the parameter combination value for the i-th group;

(9) Perform image sharpening using the lightness and alpha values from the parameter combination;

(10) Perform median filtering on the sharpened result using parameter k;

(11) Adjust brightness of the median filtered result using parameter add;
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(12) Adjust contrast of the brightness adjusted image using parameter alpha;

(13) Increment n by 1, if nis less than N, proceed to step (9), otherwise continue;

(14) Output the enhanced image;

(15) Increment i by 1, if i is less than M, proceed to step (8), otherwise continue;

(16) Conduct initial screening by observers on all enhanced images generated by parameter
combinations;

(17) Experts make final selections based on the initial screening results;

(18) If the subjective requirements of experts are not met, return to step (2) to reset parameters for
enhancement, otherwise continue;

(19) Output the parameter combinations corresponding to images that meet the subjective
requirements of experts.

The implementation of image enhancement utilizes the Sharpen method, MedianBlur method,
AddToBrightness method, and LinearContrast method in the augmenters interface of the imgaug[18]
library for image sharpening, median filtering, brightness adjustment, and contrast adjustment,
respectively.

From the overall and detailed enhancement effects in Figure 3, it can be observed that the image
enhancement method proposed in this paper effectively highlights the MRI texture details, providing
guality assurance support for target detection.

Figure 3. Comparison of Image Enhancement Effects. (a) Overall comparison; (b) Detailed comparison.

2.3. Ensemble Learning
For detection and segmentation, this paper attempts to effectively combine models based on CNN, GAN,
Transformer, and Capsule with significant differences. For 2D object detection models, Cascade R-CNN
[19], EfficientDet-D7 [20], YOLO-v7 [21], and Mask-DINO [22] are selected, while for 3D
segmentation models, TransGan [23], 3DConvCaps [24], UNETR [25], and SAMM [26] are chosen.

The core idea of ensemble learning is to use a weighted boxes fusion (WBF) based on test-time
augmentation (TTA) under a single model, followed by a dual fusion approach of TTA and WBF for
multiple models. For segmentation, minimum bounding boxes based on segmentation masks are used
for position calibration. The algorithm is described as follows:

(1) The total number of cases in the validation set is N, and each WBMRI case contains M slice
images. Set n as the current case, initialized as 1, and m as the current slice image, initialized as 1.

(2) Set the detection model as Di, where 1<i<4, with current i initialized as 1.

(3) Apply TTA to the m-th slice of the n-th case, including vertical and horizontal mirroring. Di
predicts on both the original image and the transformed image.

(4) All predicted boxes are added to list L and sorted in descending order of prediction probability.

(5) Use the WBF algorithm [27] to merge the predicted boxes, generating T,*(D;), which isthe TTA
ensemble learning fusion result.

(6) Increment m by 1. If m is greater than M, proceed to step (7); otherwise, return to step (3).

(7) n=n+1. if n > N, go to step (8); otherwise, m is initialized to 1, and return to step (3).
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(8) Increment i by 1. Reset n and m to 1. If i is greater than 4, proceed to step (9); otherwise, return
to step (3).

(9) Set the segmentation model as Sj, where 1<j<4, with current j initialized as 1.

(10) Use Sj for 3D segmentation of the WBMRI of the n-th case.

(11) Compute imaging genomics features for each segmentation area according to the algorithm
described in Sections 1.4.2 and 1.4.3 and perform feature selection.

(12) Input the selected imaging genomics features into the false positive removal classification model
to determine if the 3D region is a neurofibroma. If not, filter out the segmentation area.

(13) Retrieve the segmentation mask of each slice image in the WBMRI of the n-th case and obtain
the minimum bounding box according to the segmentation mask. If the loU of the false positive
bounding box and the T;*(D;) predicted box is greater than 0.6, remove it. The resulting prediction is
T (D).

(14) The minimum bounding box of true positive regions is the segmentation detection result,
expressed as By (S));

(15) Increment n by 1. If n is greater than N, proceed to step (16); otherwise, return to step (10).

(16) Increment j by 1. Reset n to 1. If j is greater than 4, proceed to step (17); otherwise, return to
step (10).

(17) Fuse the TTA fusion ensemble result T'7*(D;) and the segmentation prediction result B (S;)
using multiple models” WBF, obtaining the final ensemble learning prediction result F;*(D,S).

2.4. False Positive Removal

2.4.1. Acquisition of Training Samples. Positive samples are regions of neurofibromas annotated in the
WBMRI three-dimensional space, while negative samples are regions of normal organ tissues outside
of neurofibromas. In the experiment, there were a total of 158 cases with 1380 tumors. Using five-fold
cross-validation, each training set contained 1104 positive samples, and 1000 negative samples were
automatically obtained using the following automated method:

(1) The total number of cases is N, with n as the current case, initialized as 1.

(2) The sampling range is e, with each range increment length set as s, both initialized as 5 pixels.

(3) Obtain the WBMRI of the n-th case.

(4) Randomly select pixels p based on the segmentation annotation mask to obtain the edge of the
neurofibroma and the pixel points in the normal area.

(5) Use p as the pixel center and e as the radius to obtain a spherical spatial region as a negative
sample.

(6) Set e = e + s. If e is greater than 50 pixels, stop sampling and proceed to step (7); otherwise,
return to step (4).

(7) Increment n by 1. If n is greater than N, end; otherwise, return to step (3).

Since the center point p of the sampling can be on the edge of the tumor or in the normal area, these
two types of negative samples are selected at a ratio of 50% each.

2.4.2. Calculation of Imaging Genomics Features. Imaging genomics features can form imaging
biomarkers in three-dimensional space, providing a comprehensive quantification of the complex
internal features of tumors in imaging. Here, seven sets of features are generated, including histogram
statistics, gray-level co-occurrence matrix, moments, gradients, runs, edges, and wavelets.

(1) Histogram Statistics: Distribution statistics such as pixel mean, variance, kurtosis, skewness,
energy, and entropy in the three-dimensional space of the image.

(2) Gray-level Co-occurrence Matrix: Calculate twenty-two feature values of grayscale spatial
correlation by frequency of specified pixel pairs in the space, with bin set to an empirical value of 128.

(3) Moments: Calculate the second central moments invariant Ji, Jz, and Js.

(4) Gradients: Use Gaussian convolution in three-dimensional space to calculate the mean and
standard deviation of gradients in the region.
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(5) Runs: Generate texture features of 11 run-length matrices.

(6) Edges: Generate the above five imaging genomics features within 3 pixels of the spatial region
boundary.

(7) Wavelets: Combine high-frequency and low-frequency data from three-dimensional wavelet
decomposition, calculate the imaging genomics features within the formed 8 wavelet spatial
combinations.

2.4.3. Feature Selection. The above seven methods generate 721 different imaging genomics feature
values. Relative to the number of training samples, the number of features needs to be further reduced
through feature selection methods. The specific process is as follows:

(1) Standardize each feature attribute value.

(2) Calculate the variance of each feature. If the variance is too small, it indicates low feature
distinctiveness and should be filtered out.

(3) Calculate the linear and nonlinear correlations between all pairwise features. If the correlation is
too high, it indicates high feature redundancy and should be filtered out.

(4) Use seven methods including filter methods, recursive feature elimination, extreme gradient
boosting, random forests, gradient boosting decision trees, relevant features, and Lasso regression to
rank all remaining features in descending order of importance.

(5) Take the intersection of the top 20 features sorted by each method to generate 13 feature values
as the final imaging genomics features.

3. Experiment and Discussion

3.1. Experimental Environment and Data

The experimental hardware environment mainly consists of GPU cards that support deep learning, with
the model being NVIDIA Tesla V100, quantity 1. As for the software environment, Ubuntu 16.04
operating system, VSCode development environment, Python as the development language, and
TensorFlow, Keras, and PyTorch development platforms are used for single-model deep learning
training. The WBMRI image data of neurofibromatosis patients in the experiment comes from a
collaboration between Harvard Medical School and tertiary hospitals in China. The dataset includes 158
cases with a total of 1380 tumors, and five-fold cross-validation is performed. The segmentation
annotations are completed by domain experts, and the target detection annotations are automatically
generated using the minimum rectangular box of the segmentation area.

Each WBMRI sequence includes about 20 DICOM format scan images. For target detection training,
the image sequence is first converted to 8-bit grayscale images with the original resolution of 322><1086.
Since the width and height of the original images vary, it has been empirically proven in academia and
industry that deep learning performs better on square two-dimensional images. Therefore, the images
need to be adjusted to squares. The image background is black, and the smaller side of the image is
directly padded with the background color value to expand the boundary. After the boundary is expanded,
the scanned object does not deform and remains centered in the image. At this point, the resolution is
1086>1086. Then, each scanned image is resized to 512>612, and in three-dimensional space, all are
resampled to 512>612>32. After resampling, the single-layer two-dimensional images are enhanced
according to the algorithm described in Section 2.2 of this paper, and then the images are normalized.
The pixel values of all images are divided by 255 to convert them to a numerical range of 0-1. For 2D
target detection, the input image size is 512>612, and random image augmentation is performed during
training. The random combinations of augmentation methods include horizontal flipping, vertical
flipping, random rotation within 90 degrees, and random scaling and translation within a range of 10%.
For 3D segmentation, the input patch size is 32>32>32, and no data augmentation is performed during
training.
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3.2. Qualitative Analysis and Discussion

Neurofibromas may be distributed to any part of the body, mainly including the legs, arms, head and
neck, chest, abdomen, and pelvis. The volume can also vary from a few cc/ml to several hundred. In the
following display, 7 representative images will be selected, covering different parts of the body and
volumes ranging from 5cc/ml to 500cc/ml. As shown in Figure 4, it is a comparison between the
integrated learning method proposed in this paper and the detection results of 8 single-models. Here,
GT, ED, YL, CR, CC, DINO, and GAN respectively represent Ground-Truth, EfficientDet-D7,
YOLOv7, Cascade R-CNN, 3DConvCaps, Mask-DINO, and TransGAN. All detection results are
predicted after being processed by the image enhancement algorithm proposed in this paper. From the
display results, it can be seen that the detection results of the integrated learning method in this paper
are basically consistent with the Ground-Truth, with only a small amount of difference near the boundary.

3.3. Quantitative Analysis and Discussion

The performance comparison results of neurofibroma detection are shown in Table 1. For five-fold
cross-validation, the averages are shown in the table. Compared with all single models, the integrated
method proposed in this paper achieves the best results in all performance indicators. Compared with
the best-performing 3DConvCaps in the single models, AP(@0.5 loU), AP(@0.75 loU), sensitivity, and
CPM are higher by 10.1%, 9.1%, 7.8%, and 8.5% respectively. The average number of false positives
is reduced by 17.68, approximately 6 times fewer. By combining the dual WBF integrated learning with
TTA, the AP value, sensitivity, and CPM can be effectively improved to a certain extent, and a small
number of false positives can be removed through a voting mechanism. The significant reduction in
false positives is mainly due to the removal of false positives through imaging genomics features in the
post-processing.

To further explain the results of cross-validation, comparisons between this method and the top three
best-performing single models in each fold are conducted, as shown in Table 3 and Figure 5. Comparing
with the top three single models can clearly illustrate the issue. If all comparisons are made, the curves
in the figure will be too overlapping and unclear. Figure 5(a) shows the FROC curve, with data from
Table 1, indicating that the performance of this method is far superior to that of other single models
overall. In Figure 5(b), it can be seen that the highest sensitivity of this method reaches 0.942, while
3DConvCaps, TransGAN, and UNETR are only 0.885, 0.852, and 0.793 respectively, which is 0.149
higher than the worst result. In Figure 5(c), the minimum average number of false positives for this
method is 2.77, while 3DConvCaps, TransGAN, and UNETR are 16.21, 19.95, and 21.49 respectively,
which is 18.72 less than the worst result. In Figure 5(d), comparing CPM, the highest value for this
method is 0.839, while 3DConvCaps, TransGAN, and UNETR are 0.804, 0.739, and 0.730 respectively,
which is 0.109 higher than the worst result. From the results of cross-validation, the performance
indicators on each fold are higher than those of other models, further demonstrating the stability of the
model and the significant advantages brought by the integrated method and imaging genomics.
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Figure 4. Comparison of Detection Results by Different Methods
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Table 1. Comprehensive Performance Comparison Metrics

Model AP(@0.5 AP(@0.75 Sensitivity ~ Average 0.125 0.25 0.5 1 2 4 8 CPM
IoU) IoU) False
Positives
This Paper 0.827 0.692 0.871 3.580 0.628 0.694 0.745 0.770 0.811 0.839 0.875 0.766
3DConvCaps  0.726 0.601 0.793 21.26 0.51 0.597 0.666 0.689 0.734 0.742 0.831 0.681
TransGAN 0.719 0.557 0.751 2293 0489 0548 0.613 0.642 0.701 0.737 0.769 0.643
UNETR 0.682 0.541 0.708 26.37 0432 0488 0.571 0.628 0.657 0.679 0.738  0.599
SAMM 0.651 0.538 0.676 28.12 0425 0.49 0.537 0581 0.623 0.632 0.678 0.567
YOLOv7 0.408 0.282 0.441 50.01 0.194 0317 0348 0372 0411 044 0.502  0.369
MaskDINO 0.366 0.261 0.393 53.83 0.167 0232 0303 0331 0401 0432 0454 0.331
Efficient 0.236 0.195 0.259 58.05 0.027 0.073 0.172 0225 0.254 0266 0.33 0.192
Cascade 0.213 0.187 0.238 59.71 0.025 0.095 0.166 0.19 0.239 0.246 0.3383  0.186
Table 2. Cross-Validation Comparison
Model Sensitivity Average False Positives CPM
1 2 3 4 S 1 2 3 4 S 1 2 3 4 5
This Paper 0.942 0.789 0.841 0.859 0.922 4.84 3.02 2.77 3.01 4.27 0.832 0.668 0.693 0.839 0.798
3DConvCaps 0.885 0.803 0.606 0.871 0.802 24.13 18.85 16.21 20.12 27.01 0.761 0.602 0.511 0.804 0.728
TransGAN 0.851  0.651  0.624 0852 0778 2601 2086 1995 21.97 2585  0.743  0.573 0509  0.739  0.652
UNETR 0.793 0.573 0.561 0.861 0.751 30.78 21.49 26.82 24.19 28.59 0.678 0.489 0.471 0.730 0.629
Table 3. Comparison of Tumor Detection with Different Volumes
Model (0,10] (10,50] (50,100] >100 Total Detected Overall Ratio
Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio
This Paper 83 0.84 114 0.94 33 0.84 11 0.65 241 0.87
3DConvCaps 74 0.75 109 0.90 28 0.72 9 0.53 220 0.80
TransGAN 70 0.70 104 0.85 27 0.69 6 0.35 207 0.75
UNETR 68 0.69 93 0.77 29 0.74 6 0.35 196 0.71
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Figure 5. Line Chart Comparison. (a) FROC Curve; (b) Sensitivity; (c) Average False Positives; (d)
CPM

Furthermore, a comparison of tumor detection results based on different volumes is conducted. Due
to the adoption of five-fold cross-validation, the analysis is based on the average values of the validation
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set. There are a total of 276 tumors, with quantities distributed as follows: below 10cc/ml, 10-50cc/ml,
50-100cc/ml, and above 100cc/ml, with 99, 121, 39, and 17, respectively. The comparison results are
shown in Table 3. It can be observed that regardless of the volume distribution interval, the performance
of the proposed method is the best. The detection proportion in each of the four intervals is higher than
the worst result of the single model by 0.15, 0.17, 0.10, and 0.30, respectively, with an overall detection
proportion higher by 0.16. Tumors sized between 10-50cc/ml are easier to distinguish morphologically
and texturally, leading to the highest detection rate. The average detection proportions for tumors
between 50-100cc/ml and below 10cc/ml are close because smaller volumes lead to decreased
recognizability, while larger volumes may cause one tumor region to be recognized as multiple, thus
lowering the detection proportion, which also explains why the detection proportion of tumors larger
than 100cc/ml is lower.

4. Conclusion

Whole-body MRI (WBMRI) three-dimensional imaging is the core imaging method for detecting
patients with neurofibromatosis. The complexity in the distribution, morphology, and volume of such
tumors throughout the body increases the difficulty of automatic detection. A detection method
combining radiomics with ensemble learning is proposed. Firstly, medical images are enhanced to
highlight textural features. Then, a dual fusion ensemble learning method, based on single-model test-
time augmentation (TTA) fusion, is applied, followed by multi-model weighted box fusion (WBF).
Finally, false positive tumor regions are further removed using radiomics features. Experimental results
show that the proposed method outperforms the best single-model results in multiple evaluation metrics
including AP, sensitivity, average false positives, CPM, and FROC. It can effectively improve the
accuracy of neurofibromatosis detection and is also applicable to the detection of tumors and lesion
areas in other medical images. Currently, precise segmentation of neurofibromatosis remains a major
challenge. In the next research phase, ensemble learning will be combined to conduct automatic
segmentation of neurofibromatosis.
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