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Abstract. Accurate detection of neurofibromas is crucial for quantitative monitoring of tumor 

progression and surgical assessment. This paper proposes a method for neurofibroma detection 

in whole-body magnetic resonance imaging (WBMRI) using joint imaging genomics and 

ensemble learning. Firstly, we enhance texture features through a combination of image 

sharpening, filtering, brightness adjustment, and contrast enhancement. Then, we employ a 

weighted boxes fusion (WBF) technique based on test-time augmentation (TTA) under a single 

model and further integrate multiple models using the dual fusion approach of TTA and WBF. 

For segmentation, we utilize minimum bounding boxes based on segmentation masks for 

position calibration. Finally, false positive tumor regions are further eliminated through imaging 

genomics features. The experimental MRI data is obtained from collaboration between Harvard 

Medical School and domestic tertiary hospitals, comprising 158 cases with a total of 1380 tumors. 

Five-fold cross-validation is conducted with segmentation annotations completed by domain 

experts. Compared to the best results of single models, our proposed method achieves a 10.1% 

increase in average precision (AP), 7.8% increase in sensitivity, reduction of average false 

positives to 3.58, a decrease of 17.68, and an 8.5% improvement in competitive performance 

metric (CPM). This method effectively enhances the accuracy of neurofibroma detection and is 

applicable to detecting tumors and lesions in other medical imaging applications.  

Keywords: Ensemble Learning, Medical Image Detection, Imaging Genomics, Deep Learning, Object 

Detection. 

1.  Introduction 

Neurofibromas can be detected, segmented, and quantified through whole-body magnetic resonance 

imaging (WBMRI). There are significant morphological differences among individuals, making 
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automatic detection and segmentation a considerable challenge. Widely applied medical image lesion 

detection primarily includes the detection of pulmonary nodules/lesions [1][2], breast lesions [3][4], 

brain tumors [5][6], polyps [7][8], and lymph nodes [9][10]. Huang et al. [11] integrated three target 

detection models, Faster R-CNN, R-FCN, and SSD, achieving the best performance in the COCO 

dataset’s object detection challenge of that year. Xu et al. [12] proposed an object detection framework 

based on ensemble deep learning models. Sirazitdinov et al. [13] integrated RetinaNet and Mask R-CNN 

models to locate and detect pneumonia areas in X-rays. Jain et al. [14] applied ensemble learning to 

early brain tumor detection. Sreelakshmi et al. [15] introduced an encoder-decoder-based ensemble 

learning method for medical imaging. 

Precision diagnosis and auxiliary medical assistance based on imaging genomics are gradually 

becoming powerful tools in smart medicine [16]. The automatic extraction of convolutional features 

from medical images by CNN models to serve as imaging genomics features has also become possible 

[17]. However, for tumors or lesion areas with significant heterogeneous differences, there is no unified 

deep learning model that can fully extract features. In such cases, manually designed and constructed 

(hand-crafted) imaging genomics features have superior and irreplaceable advantages. To the best of 

our knowledge from domestic and international technical literature, there are no papers specifically 

addressing neurofibroma detection in WBMRI. This paper proposes a method for neurofibroma 

detection in WBMRI using joint imaging genomics and ensemble learning, making the following 

contributions: (1) Proposing an image enhancement method that combines image sharpening, filtering, 

brightness adjustment, and contrast adjustment to further highlight the texture features of neurofibromas 

and surrounding tissues in MRI. (2) Since real-time requirements are not essential for medical detection 

of neurofibromas, integrating various advanced segmentation and object detection algorithms through 

ensemble learning. This involves using a weighted boxes fusion (WBF) technique based on test-time 

augmentation (TTA) under a single model and further integrating multiple models using the dual fusion 

approach of TTA and WBF. For segmentation, minimum bounding boxes based on segmentation masks 

are utilized for position calibration. (3) Utilizing multidimensional features obtained from imaging 

genomics for tumor heterogeneity evaluation to effectively remove false positive tumor areas during 

post-processing.  

This method can effectively enhance the accuracy of neurofibroma detection and is also applicable 

to detecting tumor and lesion areas in other medical images. 

2.  Research Method 

2.1.  System Overview 

 
(a) 
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(b) 

Figure 1. Model Generation Framework. (a) Training independent detection and segmentation models; 

(b) Training false positive removal classification models. 

 

Figure 2. Ensemble Learning Prediction Framework 

The process of neurofibroma detection in WBMRI includes training and prediction. The training process, 

as shown in Figure 1, involves the independent training of multiple target detection models and 

segmentation models for ensemble learning, training of false positive removal classification models, and 

all training processes can be conducted in parallel. For medical image target detection, 2D space is more 

convenient and efficient, while for segmentation processing, 3D space provides greater accuracy and 

also supplies 3D data for false positive removal. Prediction, as illustrated in Figure 2, involves 

integrating and merging the predictions of independent detection and segmentation models. The image 

enhancement, ensemble learning strategies, and false positive removal algorithms utilizing imaging 

genomics features are described in Sections 1.2, 1.3, and 1.4, respectively. 

2.2.  Image Enhancement 

Image enhancement can further highlight the structural details and texture features of body tissues and 

lesion areas in WBMRI, providing more training basis for deep learning. The algorithm process is 

described as follows: 

(1) Input the original MRI grayscale image IM; 

(2) Set the total number of times N for operations including image sharpening, median filtering, 

brightness adjustment, and contrast adjustment, with the current count n set to 1; 

(3) Set the minimum and maximum values of parameters lightness and alpha for image sharpening, 

as well as the increment value for single transformation; 

(4) Set the minimum and maximum values of parameter k for median filtering, as well as the 

increment value for single transformation; 

(5) Set the minimum and maximum values of parameter add for brightness adjustment, as well as the 

increment value for single transformation; 

(6) Set the minimum and maximum values of parameter alpha for contrast adjustment, as well as the 

increment value for single transformation; 

(7) Generate all combination values based on the minimum and maximum values of parameters and 

the increment value, with a total of M combinations, and set the current index i to 1; 

(8) Retrieve the parameter combination value for the i-th group; 

(9) Perform image sharpening using the lightness and alpha values from the parameter combination; 

(10) Perform median filtering on the sharpened result using parameter k; 

(11) Adjust brightness of the median filtered result using parameter add; 
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(12) Adjust contrast of the brightness adjusted image using parameter alpha; 

(13) Increment n by 1, if n is less than N, proceed to step (9), otherwise continue; 

(14) Output the enhanced image; 

(15) Increment i by 1, if i is less than M, proceed to step (8), otherwise continue; 

(16) Conduct initial screening by observers on all enhanced images generated by parameter 

combinations; 

(17) Experts make final selections based on the initial screening results; 

(18) If the subjective requirements of experts are not met, return to step (2) to reset parameters for 

enhancement, otherwise continue; 

(19) Output the parameter combinations corresponding to images that meet the subjective 

requirements of experts. 

The implementation of image enhancement utilizes the Sharpen method, MedianBlur method, 

AddToBrightness method, and LinearContrast method in the augmenters interface of the imgaug[18] 

library for image sharpening, median filtering, brightness adjustment, and contrast adjustment, 

respectively. 

From the overall and detailed enhancement effects in Figure 3, it can be observed that the image 

enhancement method proposed in this paper effectively highlights the MRI texture details, providing 

quality assurance support for target detection. 

 
(a)                    (b) 

Figure 3. Comparison of Image Enhancement Effects. (a) Overall comparison; (b) Detailed comparison. 

2.3.  Ensemble Learning 

For detection and segmentation, this paper attempts to effectively combine models based on CNN, GAN, 

Transformer, and Capsule with significant differences. For 2D object detection models, Cascade R-CNN 

[19], EfficientDet-D7 [20], YOLO-v7 [21], and Mask-DINO [22] are selected, while for 3D 

segmentation models, TransGan [23], 3DConvCaps [24], UNETR [25], and SAMM [26] are chosen. 

The core idea of ensemble learning is to use a weighted boxes fusion (WBF) based on test-time 

augmentation (TTA) under a single model, followed by a dual fusion approach of TTA and WBF for 

multiple models. For segmentation, minimum bounding boxes based on segmentation masks are used 

for position calibration. The algorithm is described as follows: 

(1) The total number of cases in the validation set is N, and each WBMRI case contains M slice 

images. Set n as the current case, initialized as 1, and m as the current slice image, initialized as 1. 

(2) Set the detection model as Di, where 1≤i≤4, with current i initialized as 1. 

(3) Apply TTA to the m-th slice of the n-th case, including vertical and horizontal mirroring. Di 

predicts on both the original image and the transformed image. 

(4) All predicted boxes are added to list L and sorted in descending order of prediction probability. 

(5) Use the WBF algorithm [27] to merge the predicted boxes, generating 𝑇𝑛
𝑚(𝐷𝑖), which is the TTA 

ensemble learning fusion result.  

(6) Increment m by 1. If m is greater than M, proceed to step (7); otherwise, return to step (3). 

(7) n=n+1. if n > N, go to step (8); otherwise, m is initialized to 1, and return to step (3). 
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(8) Increment i by 1. Reset n and m to 1. If i is greater than 4, proceed to step (9); otherwise, return 

to step (3). 

(9) Set the segmentation model as Sj, where 1≤j≤4, with current j initialized as 1. 

(10) Use Sj for 3D segmentation of the WBMRI of the n-th case. 

(11) Compute imaging genomics features for each segmentation area according to the algorithm 

described in Sections 1.4.2 and 1.4.3 and perform feature selection. 

(12) Input the selected imaging genomics features into the false positive removal classification model 

to determine if the 3D region is a neurofibroma. If not, filter out the segmentation area. 

(13) Retrieve the segmentation mask of each slice image in the WBMRI of the n-th case and obtain 

the minimum bounding box according to the segmentation mask. If the IoU of the false positive 

bounding box and the 𝑇𝑛
𝑚(𝐷𝑖) predicted box is greater than 0.6, remove it. The resulting prediction is 

𝑇′𝑛
𝑚(𝐷𝑖).  

(14) The minimum bounding box of true positive regions is the segmentation detection result, 

expressed as 𝑃𝑛
𝑚(𝑆𝑗); 

(15) Increment n by 1. If n is greater than N, proceed to step (16); otherwise, return to step (10). 

(16) Increment j by 1. Reset n to 1. If j is greater than 4, proceed to step (17); otherwise, return to 

step (10). 

(17) Fuse the TTA fusion ensemble result 𝑇′𝑛
𝑚(𝐷𝑖) and the segmentation prediction result 𝑃𝑛

𝑚(𝑆𝑗) 

using multiple models’ WBF, obtaining the final ensemble learning prediction result 𝐹𝑛
𝑚(𝐷, 𝑆). 

2.4.  False Positive Removal 

2.4.1.  Acquisition of Training Samples. Positive samples are regions of neurofibromas annotated in the 

WBMRI three-dimensional space, while negative samples are regions of normal organ tissues outside 

of neurofibromas. In the experiment, there were a total of 158 cases with 1380 tumors. Using five-fold 

cross-validation, each training set contained 1104 positive samples, and 1000 negative samples were 

automatically obtained using the following automated method: 

(1) The total number of cases is N, with n as the current case, initialized as 1. 

(2) The sampling range is e, with each range increment length set as s, both initialized as 5 pixels. 

(3) Obtain the WBMRI of the n-th case. 

(4) Randomly select pixels p based on the segmentation annotation mask to obtain the edge of the 

neurofibroma and the pixel points in the normal area. 

(5) Use p as the pixel center and e as the radius to obtain a spherical spatial region as a negative 

sample. 

(6) Set e = e + s. If e is greater than 50 pixels, stop sampling and proceed to step (7); otherwise, 

return to step (4). 

(7) Increment n by 1. If n is greater than N, end; otherwise, return to step (3). 

Since the center point p of the sampling can be on the edge of the tumor or in the normal area, these 

two types of negative samples are selected at a ratio of 50% each. 

2.4.2.  Calculation of Imaging Genomics Features. Imaging genomics features can form imaging 

biomarkers in three-dimensional space, providing a comprehensive quantification of the complex 

internal features of tumors in imaging. Here, seven sets of features are generated, including histogram 

statistics, gray-level co-occurrence matrix, moments, gradients, runs, edges, and wavelets. 

(1) Histogram Statistics: Distribution statistics such as pixel mean, variance, kurtosis, skewness, 

energy, and entropy in the three-dimensional space of the image. 

(2) Gray-level Co-occurrence Matrix: Calculate twenty-two feature values of grayscale spatial 

correlation by frequency of specified pixel pairs in the space, with bin set to an empirical value of 128. 

(3) Moments: Calculate the second central moments invariant J1, J2, and J3. 

(4) Gradients: Use Gaussian convolution in three-dimensional space to calculate the mean and 

standard deviation of gradients in the region. 
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(5) Runs: Generate texture features of 11 run-length matrices.  

(6) Edges: Generate the above five imaging genomics features within 3 pixels of the spatial region 

boundary. 

(7) Wavelets: Combine high-frequency and low-frequency data from three-dimensional wavelet 

decomposition, calculate the imaging genomics features within the formed 8 wavelet spatial 

combinations. 

2.4.3.  Feature Selection. The above seven methods generate 721 different imaging genomics feature 

values. Relative to the number of training samples, the number of features needs to be further reduced 

through feature selection methods. The specific process is as follows: 

(1) Standardize each feature attribute value. 

(2) Calculate the variance of each feature. If the variance is too small, it indicates low feature 

distinctiveness and should be filtered out. 

(3) Calculate the linear and nonlinear correlations between all pairwise features. If the correlation is 

too high, it indicates high feature redundancy and should be filtered out. 

(4) Use seven methods including filter methods, recursive feature elimination, extreme gradient 

boosting, random forests, gradient boosting decision trees, relevant features, and Lasso regression to 

rank all remaining features in descending order of importance. 

(5) Take the intersection of the top 20 features sorted by each method to generate 13 feature values 

as the final imaging genomics features. 

3.  Experiment and Discussion 

3.1.  Experimental Environment and Data 

The experimental hardware environment mainly consists of GPU cards that support deep learning, with 

the model being NVIDIA Tesla V100, quantity 1. As for the software environment, Ubuntu 16.04 

operating system, VSCode development environment, Python as the development language, and 

TensorFlow, Keras, and PyTorch development platforms are used for single-model deep learning 

training. The WBMRI image data of neurofibromatosis patients in the experiment comes from a 

collaboration between Harvard Medical School and tertiary hospitals in China. The dataset includes 158 

cases with a total of 1380 tumors, and five-fold cross-validation is performed. The segmentation 

annotations are completed by domain experts, and the target detection annotations are automatically 

generated using the minimum rectangular box of the segmentation area. 

Each WBMRI sequence includes about 20 DICOM format scan images. For target detection training, 

the image sequence is first converted to 8-bit grayscale images with the original resolution of 322×1086. 

Since the width and height of the original images vary, it has been empirically proven in academia and 

industry that deep learning performs better on square two-dimensional images. Therefore, the images 

need to be adjusted to squares. The image background is black, and the smaller side of the image is 

directly padded with the background color value to expand the boundary. After the boundary is expanded, 

the scanned object does not deform and remains centered in the image. At this point, the resolution is 

1086×1086. Then, each scanned image is resized to 512×512, and in three-dimensional space, all are 

resampled to 512×512×32. After resampling, the single-layer two-dimensional images are enhanced 

according to the algorithm described in Section 2.2 of this paper, and then the images are normalized. 

The pixel values of all images are divided by 255 to convert them to a numerical range of 0-1. For 2D 

target detection, the input image size is 512×512, and random image augmentation is performed during 

training. The random combinations of augmentation methods include horizontal flipping, vertical 

flipping, random rotation within 90 degrees, and random scaling and translation within a range of 10%. 

For 3D segmentation, the input patch size is 32×32×32, and no data augmentation is performed during 

training. 
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3.2.  Qualitative Analysis and Discussion 

Neurofibromas may be distributed to any part of the body, mainly including the legs, arms, head and 

neck, chest, abdomen, and pelvis. The volume can also vary from a few cc/ml to several hundred. In the 

following display, 7 representative images will be selected, covering different parts of the body and 

volumes ranging from 5cc/ml to 500cc/ml. As shown in Figure 4, it is a comparison between the 

integrated learning method proposed in this paper and the detection results of 8 single-models. Here, 

GT, ED, YL, CR, CC, DINO, and GAN respectively represent Ground-Truth, EfficientDet-D7, 

YOLOv7, Cascade R-CNN, 3DConvCaps, Mask-DINO, and TransGAN. All detection results are 

predicted after being processed by the image enhancement algorithm proposed in this paper. From the 

display results, it can be seen that the detection results of the integrated learning method in this paper 

are basically consistent with the Ground-Truth, with only a small amount of difference near the boundary. 

3.3.  Quantitative Analysis and Discussion 

The performance comparison results of neurofibroma detection are shown in Table 1. For five-fold 

cross-validation, the averages are shown in the table. Compared with all single models, the integrated 

method proposed in this paper achieves the best results in all performance indicators. Compared with 

the best-performing 3DConvCaps in the single models, AP(@0.5 IoU), AP(@0.75 IoU), sensitivity, and 

CPM are higher by 10.1%, 9.1%, 7.8%, and 8.5% respectively. The average number of false positives 

is reduced by 17.68, approximately 6 times fewer. By combining the dual WBF integrated learning with 

TTA, the AP value, sensitivity, and CPM can be effectively improved to a certain extent, and a small 

number of false positives can be removed through a voting mechanism. The significant reduction in 

false positives is mainly due to the removal of false positives through imaging genomics features in the 

post-processing. 

To further explain the results of cross-validation, comparisons between this method and the top three 

best-performing single models in each fold are conducted, as shown in Table 3 and Figure 5. Comparing 

with the top three single models can clearly illustrate the issue. If all comparisons are made, the curves 

in the figure will be too overlapping and unclear. Figure 5(a) shows the FROC curve, with data from 

Table 1, indicating that the performance of this method is far superior to that of other single models 

overall. In Figure 5(b), it can be seen that the highest sensitivity of this method reaches 0.942, while 

3DConvCaps, TransGAN, and UNETR are only 0.885, 0.852, and 0.793 respectively, which is 0.149 

higher than the worst result. In Figure 5(c), the minimum average number of false positives for this 

method is 2.77, while 3DConvCaps, TransGAN, and UNETR are 16.21, 19.95, and 21.49 respectively, 

which is 18.72 less than the worst result. In Figure 5(d), comparing CPM, the highest value for this 

method is 0.839, while 3DConvCaps, TransGAN, and UNETR are 0.804, 0.739, and 0.730 respectively, 

which is 0.109 higher than the worst result. From the results of cross-validation, the performance 

indicators on each fold are higher than those of other models, further demonstrating the stability of the 

model and the significant advantages brought by the integrated method and imaging genomics. 
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(1) Arm (2) Pelvis (3) Abdomen (4) Abdomen (5) Neck (6) Chest (7) Leg 

Figure 4. Comparison of Detection Results by Different Methods 
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Table 1. Comprehensive Performance Comparison Metrics 

Model AP(@0.5 
IoU) 

AP(@0.75 
IoU) 

Sensitivity Average 
False 

Positives 

0.125 0.25 0.5 1 2 4 8 CPM 

This Paper 0.827 0.692 0.871 3.580 0.628 0.694 0.745 0.770 0.811 0.839 0.875 0.766 

3DConvCaps 0.726 0.601 0.793 21.26 0.51 0.597 0.666 0.689 0.734 0.742 0.831 0.681 

TransGAN 0.719 0.557 0.751 22.93 0.489 0.548 0.613 0.642 0.701 0.737 0.769 0.643 

UNETR 0.682 0.541 0.708 26.37 0.432 0.488 0.571 0.628 0.657 0.679 0.738 0.599 

SAMM 0.651 0.538 0.676 28.12 0.425 0.49 0.537 0.581 0.623 0.632 0.678 0.567 

YOLOv7 0.408 0.282 0.441 50.01 0.194 0.317 0.348 0.372 0.411 0.44 0.502 0.369 

MaskDINO 0.366 0.261 0.393 53.83 0.167 0.232 0.303 0.331 0.401 0.432 0.454 0.331 
Efficient 0.236 0.195 0.259 58.05 0.027 0.073 0.172 0.225 0.254 0.266 0.33 0.192 

Cascade 0.213 0.187 0.238 59.71 0.025 0.095 0.166 0.19 0.239 0.246 0.338 0.186 

Table 2. Cross-Validation Comparison 

Model Sensitivity Average False Positives CPM 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

This Paper 0.942 0.789 0.841 0.859 0.922 4.84 3.02 2.77 3.01 4.27 0.832 0.668 0.693 0.839 0.798 

3DConvCaps 0.885 0.803 0.606 0.871 0.802 24.13 18.85 16.21 20.12 27.01 0.761 0.602 0.511 0.804 0.728 

TransGAN 0.851 0.651 0.624 0.852 0.778 26.01 20.86 19.95 21.97 25.85 0.743 0.573 0.509 0.739 0.652 

UNETR 0.793 0.573 0.561 0.861 0.751 30.78 21.49 26.82 24.19 28.59 0.678 0.489 0.471 0.730 0.629 

Table 3. Comparison of Tumor Detection with Different Volumes 

Model (0,10] (10,50] (50,100] >100 Total Detected Overall Ratio 

Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio 

This Paper 83 0.84 114 0.94 33 0.84 11 0.65 241 0.87 

3DConvCaps 74 0.75 109 0.90 28 0.72 9 0.53 220 0.80 

TransGAN 70 0.70 104 0.85 27 0.69 6 0.35 207 0.75 

UNETR 68 0.69 93 0.77 29 0.74 6 0.35 196 0.71 

 
(a)                                                  (b)  

 
(c)                                                  (d)  

Figure 5. Line Chart Comparison. (a) FROC Curve; (b) Sensitivity; (c) Average False Positives; (d) 

CPM 

Furthermore, a comparison of tumor detection results based on different volumes is conducted. Due 

to the adoption of five-fold cross-validation, the analysis is based on the average values of the validation 
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set. There are a total of 276 tumors, with quantities distributed as follows: below 10cc/ml, 10-50cc/ml, 

50-100cc/ml, and above 100cc/ml, with 99, 121, 39, and 17, respectively. The comparison results are 

shown in Table 3. It can be observed that regardless of the volume distribution interval, the performance 

of the proposed method is the best. The detection proportion in each of the four intervals is higher than 

the worst result of the single model by 0.15, 0.17, 0.10, and 0.30, respectively, with an overall detection 

proportion higher by 0.16. Tumors sized between 10-50cc/ml are easier to distinguish morphologically 

and texturally, leading to the highest detection rate. The average detection proportions for tumors 

between 50-100cc/ml and below 10cc/ml are close because smaller volumes lead to decreased 

recognizability, while larger volumes may cause one tumor region to be recognized as multiple, thus 

lowering the detection proportion, which also explains why the detection proportion of tumors larger 

than 100cc/ml is lower. 

4.  Conclusion 

Whole-body MRI (WBMRI) three-dimensional imaging is the core imaging method for detecting 

patients with neurofibromatosis. The complexity in the distribution, morphology, and volume of such 

tumors throughout the body increases the difficulty of automatic detection. A detection method 

combining radiomics with ensemble learning is proposed. Firstly, medical images are enhanced to 

highlight textural features. Then, a dual fusion ensemble learning method, based on single-model test-

time augmentation (TTA) fusion, is applied, followed by multi-model weighted box fusion (WBF). 

Finally, false positive tumor regions are further removed using radiomics features. Experimental results 

show that the proposed method outperforms the best single-model results in multiple evaluation metrics 

including AP, sensitivity, average false positives, CPM, and FROC. It can effectively improve the 

accuracy of neurofibromatosis detection and is also applicable to the detection of tumors and lesion 

areas in other medical images. Currently, precise segmentation of neurofibromatosis remains a major 

challenge. In the next research phase, ensemble learning will be combined to conduct automatic 

segmentation of neurofibromatosis. 
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