
Library management database design and application

Jiahao Liang

D'Amore-McKim School of Business, Northeastern University, Boston,

Massachusetts, 02120, United State

liang.jiaha@northeastern.edu

Abstract. Under the data-centric business environment, efficient database design is pivotal for

efficient data management across various sectors. For libraries and bookstores, a well-tailored

database is essential to categorize, index, and swiftly retrieve vast amounts of data, ensuring

efficient operations. MySQL is an open-source database management system which facilitates

efficient data manipulation. Based on MySQL, this essay delves into the realm of library

database design and application, addressing the need for streamlined systems. This research

addresses the need for adaptation in the evolving technology landscape and offers practical

insights for librarians and researchers aiming to optimize information management in modern

libraries. Employing the basic steps for database design, we explore one methodology for

designing a library management database based on the design of database requirement, modeling,

backend implementation, efficiency optimization and testing using MySQL. Through this

approach, the study provides a potential solution that meets the basic requirements of libraries

and enhances information management practices.

Keywords: Library Management, Database Design, Data Integrity.

1. Introduction

To maintain the competitive advantages under the dynamic change over the external technology

environment, many businesses start to focus on the business digital transformation. The related

technology such as cloud, mobile, big data analysis changed how organizations operate fundamentally

and helped companies to maintain their competitive advantages [1]. For library or bookstore industry, a

well-designed database that tailored to the unique needs of librarians, researchers, and patrons provides

a structured framework to categorize, index, and retrieve the vast amount of data swiftly and accurately.

Efficiently managing data within a library environment is paramount to its effective functioning.

MySQL is an open-sourced database management system that enable insert, update, delete, query data

efficiently [2]. To handle with the vast amount of data, create a relational database using MySQL is one

of the most common solutions. Based on MySQL, this essay embarks on a journey into the realm of

library database design and its practical applications, emphasizing the need for streamlined systems that

enhance information management. By employing fundamental principles of database design, we delve

into a specific methodology for crafting a comprehensive library management database. In light of the

rapid advancements in digital technologies, the motivation behind this research stems from the pressing

need to adapt and excel in an ever-changing technological landscape. Based on the methodology

outlined in the reference book, this research navigates through the stages of database requirement

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

219

identification, conceptual modeling, backend implementation, optimization and offers some testing

samples using MySQL[3]. By executing this comprehensive approach, the research provides a possible

solution that addresses the motivational concerns, ensuring that the database design and implementation

align with the basic library requirement for enhanced information management.

2. Database requirement collection

The first important step for the whole process of designing a database is collecting the requirement for

the creation of metadata. This requirement can be based on the demand of our clients or the current data.

At this step, determine the entities to hold the data enable represent the reality accurately. Figure 1 and

figure 2 conceptualized some main business process based on Boston Public Library using flow chart

[4]. Figure 1 illustrates a complete process of user completing the borrowing procedure or library card

information management at the library. The right side of the flowchart shows the possible entities

involved or information required on each process. A customer begins with the registration or login at a

library using personal information. Subsequently, they have the option to either search for specific

library collections using provided information or perform various library card management tasks, such

as profile editing, and item returns within the library premises. If they want to borrow anything from the

library, the system will check whether item status is available at the specific library branch. Finally, the

customer finishes the reservation after any confirmation (Figure 1).

Figure 1. Reservation and information management procedure.

Figure 2 outlines an alternative pathway for customers seeking to engage with various services within

the library. In a manner akin to the previous process, following customer registration or login, they

proceed to choose a specific library branch. At this point, the webpage or application presents a range

of available services, including participation in specialized library events and scheduling appointments

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

220

with staff members. They system then reply with the services details like schedules or help making an

appointment.

Figure 2. Process customer engages with library services.

Under those examples, the common entities include library information, library department,

employee, customer, type of collections, collections, items, publishers, contributors, library events,

library appointments, library courses, item reservation, and the datetime schedules for events. These

data entities need to be flexibly adjusted according to practical requirements.

2.1. Database design for customers

The following section of the database requirement is to specify the relationships requirements in detail

based on the different user groups. To facilitate the conceptual design process in the later part, the

specific relationships and cardinalities between data entities need to be described as accurately as

possible. Customers would be one of the main user groups using this database. Based on the flowchart

above, three main roles that required to be supported include customer information management, library

card management, reservation, and customer services.

The database should store essential customer details, including their name, Social Security Number

(SSN), email, and phone number. A unique customer ID (CustomerID) will serve as the primary key. In

term of library card issuance, the system must facilitate new customer registration and able to record the

issuance of distinct library cards. Each library card is associated with a unique card ID (CardID) and is

linked to a specific customer (CustomerID). A customer is allowed to possess only one library card at a

time.

To achieve the role of reservation management, customers should be allowed to make reservations

for library items like books, and CDs. The database needs to retain reservation particulars, comprising

the reservation date, status, linked library card (CardID), and the item reserved (ItemID). The system

should provide access to customers' reservation history and item details, including their status. Upon

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

221

item reservation, the database support frequent update toward item's status and record the reservation

history. Customers can hold a maximum of 0 to 5 items concurrently.

For the service section, customers should have the capability to schedule appointments with library

staff for assistance. The database should record appointment details, encompassing the time schedule,

appointment type (AppointmentType), unique ID (AppointmentID), and status. A customer can have

multiple appointments, and each appointment is distinct and reserved solely for that customer.

2.2. Database design for employees

The employee or librarian is the other main users of this database, whose information would be used in

employee certification and customer service support. The database must store employee information,

including their name, Social Security Number (SSN), gender, email, phone number, and employee status.

Each employee should have a unique employee ID (EmployeeID) as the primary key. Employees should

be linked with specific departments within a specific library branch. Each employee is exclusively

affiliated with one department, ensuring a singular department assignment at any given time.

For appointment, the database should store information about the appointments they served. One

appointment can be served by multiple employees depends on the appointment details. The employee

can work for one department at the same time. An appointment can involve collaboration among

multiple employees depending on the appointment's nature.

2.3. Database design for libraries

The database requirement design for the library component encompasses the intricate relationships and

functionalities pertaining to library branches, departments, events, courses, collections, and associated

entities. The database will encompass essential particulars for all connected library branches. This

information comprises the library name (LibraryName), contact details, email address, physical address,

and specific operating hours for each day. A customer can exclusively register at any one library branch,

while enjoying service access across all Boston Public Library branches. Each library can cater to a

diverse range of customers, adhering to a one-to-many relationship. Libraries house various departments,

each with a unique opening schedule for the public. Each department have a unique id can belong to

only one library.

Each library can host special events that free for publics to join. A library can organize multiple

events concurrently, with uniqueness guaranteed across different libraries. The database will store the

ID (EventID), name, description, and status of every events. Each course has one to many unique

schedules. Library also provides many general courses to the publics. Similarly, the course name,

schedule, status would be recorded. Each course has one to many unique schedules.

The database should also be able to manage its collections. The collection is virtual item in the library.

Each collection possesses a unique ID, name, addition date, description, and ISBN. Collections are

categorized into types like music, fiction, etc., identified by a TypeID. The publisher information will

include the publisherID, publisher name, country, and the city. Collections can be published by multiple

publishers, signifying various versions of an item. Each publisher maintains links to multiple collections,

contributing to diverse library offerings. For every collection, the database also records the contributors.

One collection can have one to many contributors. Each contributors’ name, gender, age, education,

major, job would also be recorded to facilitate user’s searching.

Item entity represent the real hard copies of a collection that stored in different library. Every copy

is unique with a status used to determine whether it can be reserved. Every collection can have multiple

unique copies in libraries and each library can have multiple copies for the same collection.

3. Requirement Visualization

The conceptual design phase helps shaping the foundation of a robust and effective system. In the step

of conceptual design, the objective is to map the relationships, attributes, and requirements into a

standard database structure. This can be achieved by creating an Entity-Relationship (ER) diagram

which serves as a visual representation that encapsulates the essence of the database's structure and the

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

222

connections between entities (Figure 3). The format and method referenced the book Database system

[5].

Figure 3. ER diagram for relational database.

To ensure the data integrity, the design here can directly adhere to the third normal form. This stage

involves the consideration of two primary types of dependencies: partial functional dependency and

transitive functional dependency.

4. Normalization

Second normal form (2NF) focusing primarily on addressing partial dependencies within the data model.

In the context of our conceptual design, a key consideration lies in the avoidance of utilizing composite

keys as the primary key for each entity. This step is crucial in reducing redundancy and ensuring that

each primary key uniquely identifies the respective entity. Such dependencies can lead to inefficiencies,

data anomalies, and increased complexity [6].

Based on the second normal form, to further fortify the database structure, we then examining

transitive dependencies—a key step in reaching the third normal form (3NF). This involves ensuring

that no non-key attribute depends on another non-key attribute which also help ensure the data integrate.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

223

If a non-key attribute depends on another non-key attribute, we can simply separate the attributes into

two separate tables.

5. Database Modeling

Before transitioning from the conceptual model to a practical implementation, it is necessary to convert

the Entity-Relationship diagram into a relational model (Figure 4).

Figure 4. Relational Model.

The guiding principle of this transformation is based on the fundamental rule of mapping the

relationships. In the table representing the "many" sides of the relationship, add a foreign key column

that references the primary key of the table representing the "one" side.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

224

In scenarios where many-to-many relationships are involved, we create a third table as the junction

table represent the relationship between two entities. This table serves as an intermediary that captures

the intricate associations between two entities. The junction table include a composite primary key of

the two related entities and foreign key columns reference the primary keys of the two related tables.

6. Database optimization and implementation

In this research, all the database implementation is based on the MySQL database. With the relation

model above, we can implement the database easily. Here’s some optimization suggestions that can be

considered. For primary key optimization, all primary keys used in the database should be an auto

increment value for efficiency considerations. This is because MySQL add an index for every primary

automatically with a B+ tree as the underlying structure [7]. In this case, any new insertion is a sequential

insertion and will not change the structure of the B+ tree or split of the leaf node [8]. That can maintain

the efficiency during insertion while the amount of the data growing.

For security concern, the one-to-one relationship customer and library card is separated instead of

combined. The customer password would be stored in the library card entity so that we restrict

customer’s chance directly access to the reservation record and the password. On the other hand, the

customer is free to change their address and other info in the customer table. This also helps avoid some

potential privacy issues. It helps minimize data exposure by only showing necessary information to

employees during interactions. For instance, if a customer wants to borrow a book, the employee doesn't

need to see the customer's full personal details. On the other hand, this also helps fulfill some legal

obligations such as European Union General Data Protection Regulation (EU GDPR) [9,10], when

different levels level of protection is required between user personal information and user account.

Data integrity can be protected automatically by refining the triggers and constraints. An example

will be presented using a trigger to automatically ensure data consistency. Regarding the reservation

table, the reservation date and customer information are updated if an item is reserved from the library.

Upon item return, the corresponding record is updated with the return date. When a customer aims to

reserve an item online at a specific library, prevention measures are in place to limit excessive

reservations or reserving transferred items. Following successful reservation, adjustment of the specific

item's status becomes the responsibility of the librarian. Implementing a before-insert trigger on the

reservation table involves assessing the item's status before executing the reservation action. A sample

flowchart for this trigger is presented in Figure 5.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

225

Figure 5. Flow chart for one sample trigger.

On the other hand, data integrity can also be ensured during front end application development. For

example, data format consistency can be sustained by implementing a client-side validation to ensure

that users enter data in the expected format. Dropdown selection, sanitization and escaping are some

other commonly used methods to regulate the user input. Since this project forced on the backend

database development, no further examples would be discussed in this context.

7. Application and testing

To ascertain the viability of the database design, a sample database and its associated triggers have been

constructed in MySQL, adhering closely to the relational model. This following part provides some

sample of data query, updating and insertion to test for the data integrity. Sample 1 shows when customer

send a query for the status of a collection online: given a collection name, return the status and

information of all such item under the collection. Based on the testing data (Appendix A), we write a

query to select collection name, publisher name, isbn, contributors, item status, and library name from

the joined table, we can get the information in Figure 6.

Figure 6. The sample result from the query.

One of the trigger used in the database is tested in sample 2. The item table shows item 1, 3, 5 have

been transferred (Figure 7).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

226

Figure 7. Item table before change in reservation table.

Assume one customer with card ID 1 want to reserve the item with ItemID 2 from the library. The

system adds a new entry with reservation ID 4 into reservation table (Figure 8). Figure 9 shows the

change of item status in the item table. The item status of item 2 is changed automatically into

“transferred” as the reservation confirmed in the trigger.

Figure 8. Add new reservation to table.

Figure 9. Item table after change in reservation table.

Sample 3 shows a test for some self-defined reservation constraints: a user can reserve 5 items at

maximum. In figure 8, customer with card ID 1 have two unreturned items. Then three more items have

been reserved successfully by the same customers (Figure 10).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

227

Figure 10. Reservation table after three new reservations from same customer.

If a librarian tried to approve the reservation of the sixth book, that action would be rejected by an

error message “Error Code: 1644. reservation over maximum item: 5” (Figure 11).

Figure 11. New reservation rejected by the trigger.

8. Conclusion

This essay provides a sample of how to design a database for library based on the traditional database

design steps. The core steps involve collecting the basic requirement based on the clients and main users,

followed by visualizing and normalizing the database based on the requirements. After visualizing the

database structure, the subsequent step includes completing the logical design of the database using a

relational model and incorporating any essential optimizations. This design is then implemented and

subjected to thorough testing. The sample provided is only a simple sample for the library management

systems. In practical situations, the database design needs to be flexible based on different scenarios and

requirements. Further research is needed on deep-level optimization, database integration with frontend

applications, and other related issues.

References

[1] Binildas, C. A. (2019). Practical microservices architectural patterns: Event-based Java

microservices with Spring Boot and Spring Cloud. Apress 29.

[2] Schwertner, K. (2017). Digital transformation of business. Trakia Journal of Sciences, 15(1), 388-

393.

[3] Jukic N. Vrbsky S. & Nestorov S. (2017). Database systems: introduction to databases and data

warehouses. Prospect Press.

[4] Boston Public Library. (n.d.). https://www.bpl.org/

[5] Connolly, T. M., & Begg, C. E. (2015). Database systems: A practical approach to design,

implementation and management. Pearson 34.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

228

[6] Upadhyay, M. (2023,). Second normal form (2NF). GeeksforGeeks. https://www.

geeksforgeeks.org/second-normal-form-2nf/

[7] MySQL 8.0 Reference Manual: 8.3.2 primary key optimization. MySQL. (n.d.).

https://dev.mysql.com/doc/refman/8.0/en/primary-key-optimization.html

[8] P. Kieseberg, S. Schrittwieser, P. Frühwirt and E. Weippl, (2019) Analysis of the Internals of

MySQL/InnoDB B+ Tree Index Navigation from a Forensic Perspective, International

Conference on Software Security and Assurance, 46-51,

[9] Prateek, T. L. (2023). Normalization in SQL: 1NF, 2NF, 3NF and BCNF in database. Edureka.

https://www.edureka.co/blog/normalization-in-sql/

[10] Axel., V., Paul. Von Dem. (2018) EU General Data Protection Regulation (GDPR): A practical

guide. Springer international pu,1-10.

Appendix A:

Library:

Collection:

Publisher:

Contributors

Publisher_publish_collection;

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

229

Item:

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230555

230

