
Advances	in	Engineering	Innovation	Vol.2 EWA	Publishing
Available	Online:	7	October	2023 DOI:	10.54254/2977-3903/2/2023013

Database security

Cameron Parisi, Samantha Renicker
Saint Leo University

Abstract. In the modern technological tapestry, the security of database systems has burgeoned into
a prominent concern for institutional frameworks. This urgency is invigorated by a dual confluence:
the shifting industry paradigm which underscores the primacy of expansive data collections, coupled
with the proliferation of legislative frameworks that zealously guard the sanctity of individual
consumer data. The core aim of this discourse is to furnish a panoramic understanding of
indispensable measures to bolster database security, with an amplified emphasis on countering SQL
injection threats. The introductory segment delineates essential fortification strategies and succinctly
touches upon optimal practices for shaping a database environment’s network topography and error
mitigation methodologies. Subsequent to this panoramic insight, the discourse pivots to spotlight a
diverse array of methodologies to discern and neutralize SQL injection forays.

Keywords: database security, SQL injection, general practices

1. Securing database systems: An academic perspective
In the contemporary technological epoch, databases have surged in significance due to the escalating
emphasis on data's intrinsic value in commercial sectors. The imperative nature of data security stems not
merely from preserving its inherent value – with data access control enhancing its monetization potential –
but it also remains a fundamental legal obligation for market operations across the globe.

2. Guidelines for strengthening database security

2.1 System fortification
It's pivotal to recognize that a default database environment seldom aligns with optimal security
benchmarks, and invariably, it remains unadjusted to an entity's unique operational needs. Hence, refining
database security necessitates augmenting the robustness of the database milieu. The elemental step involves
fortifying the physical security of the database server, a task which occasionally may not fall within an
entity's purview, especially with leased servers [1]. Post-initialization, the software ought to be tailored to
maximize security within the framework of the envisaged application [2]. Common measures encompass
eliminating superfluous default accounts, calibrating role-based permissions, and assuring distinct
administrative credentials for each database overseer [3]. Foundational user permissions ought to be
stringently limited, and extraneous functions and services deactivated, which includes ensuring port security
and eschewing redirection [3]. Moreover, the database management system should be granted the least
privilege on the host operating system that's aligned with the targeted operational intent [2].

Advances	in	Engineering	Innovation	|	Vol.2	|	1111

2.2 Network topology
When database accessibility via a web server is anticipated, the ideal placement for the database server is
within the internal nexus of a demilitarized domain [3,4]. Such a configuration situates the web server within
the demilitarized realm, positioning it behind a singular firewall while the database server benefits from
dual firewall protection [3,4]. In the realm of network topology, both Ben-Natan (2005) and Morrison [5]
underline the heightened susceptibility associated with housing the database on a server exposed to the
internet. Even if the database system judiciously eschews external connections, potentialities for inadvertent
database file exposure remain, stemming from lacunae in the web server.

2.3 Error handling protocols
In the landscape of database management, broadcasting verbose error disclosures to users isn't merely
discouraged but is perceived as a tangible security chink [3]. Such disclosures inadvertently arm malicious
entities, aiding in fine-tuning their intrusion techniques, a phenomenon profoundly manifest in SQL
injection scenarios. Herein, SQL feedbacks can inadvertently guide an attacker, revealing reasons behind
their failed attempts, be it due to syntactical misalignments, erroneous table identifiers, or column
discrepancies.

2.4 Countering SQL injection vulnerabilities
The existence of SQL injections can be attributed to inherent susceptibilities within SQL paradigms. While
tools have emerged to counter detected injection attempts, a predominant catalyst remains the absence of
robust input validation mechanisms for user-mediated data [5]. While proactive coding practices offer a
remedy, addressing some vulnerability aspects through techniques like input type validation, data encoding,
positive pattern authentication, and holistic input source identification, they may not always emerge as the
ultimate panacea.

2.4.1 Intricacies of defensive coding approaches. A robust defensive coding strategy underpins the
fortification of data repositories against malignant incursions. One imperative facet involves the meticulous
verification of data types encompassed within tabular constructs. Historically, cyber malefactors have been
observed to exploit string and numeric data fields, surreptitiously introducing malicious scripts [6]. A
remedial maneuver mandates configuring input parameters, compelling users to strictly adhere to prescribed
input types. Alarmingly, the predilection to default input categories to 'string' emboldens attackers in their
clandestine endeavors [6]. Another sterling technique entails the encoding of inputs, thwarting adversaries
from utilizing meta-characters to morph benign user inputs into malicious SQL tokens [7]. A paradigmatic
strategy, termed positive pattern matching or positive validation, enables databases to discern and prioritize
valid inputs, rather than spreading thin over myriad potential threats [8]. Yet, it's imperative to discern that
the Achilles heel of defensive coding pivots on human oversight and laxity in enforcement [9].

2.4.2 Diverse preventative methodologies. Sole reliance on defensive coding might often prove quixotic in
the face of sophisticated SQL injection stratagems. A rich tapestry of auxiliary techniques beckons,
encompassing black-box testing, static code evaluators, hybrid static-dynamic analyses, taint-driven
methodologies, avant-garde query paradigms, intrusion detection machineries, proxy-based filtering, and
the arcane art of instruction set randomization [10].

One laudable methodology, christened 'WAVES', delves into vulnerability assessment in web
frameworks through black-box testing. It harnesses web crawlers to meticulously identify potential chinks,
subsequently unleashing targeted cyber onslaughts based on predefined patterns and tactics [11].
Encapsulation, on another front, fortifies databases by metamorphosing the query generation process from
an anarchic string concatenation mechanism to a regimented, type-checked API system [12]. Another potent

1212	|	Advances	in	Engineering	Innovation	|	Vol.2

shield, 'Amnesia', synergizes static and dynamic analyses to preemptively thwart injection offensives [13].
Furthermore, 'SQLrand' employs randomized instructions, stymieing potential adversaries by concealing
the true nature of database queries [14].

2.4.3 Epilogue: The journey ahead. The protective measures and insights distilled in this treatise serve as
the bedrock to shielding database ecosystems and to cognize and counter the looming specter of SQL
injection. Yet, the onus falls on implementers to delve deeper into the abyss of cyber threats like buffer
overflow assaults, a discourse beyond the precincts of this exposition [15]. Additionally, the legislative
labyrinth governing database security is in perpetual flux, especially in light of monumental frameworks
like the European Union's General Data Protection Regulation.

References
[1] Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2002). Order preserving encryption for numeric data.

Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data (pp.
563-574).

[2] Bertino, E., Sandhu, R., & Ferrari, E. (2001). Day-to-day access control for DBMS: An ADITI
experience. Computer Security Foundations Workshop, 2001. Proceedings. 14th IEEE (pp. 49-
64). IEEE.

[3] Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 377-387.

[4] Date, C. J. (2004). An introduction to database systems (8th ed.). Boston, MA: Addison-Wesley.
[5] Elmasri, R., & Navathe, S. B. (2011). Fundamentals of database systems (6th ed.). Boston, MA:

Addison-Wesley.
[6] Garcia-Molina, H., Ullman, J. D., & Widom, J. (2009). Database systems: The complete book (2nd

ed.). Upper Saddle River, NJ: Prentice Hall Press.
[7] Halfond, W. G., Viegas, J., & Orso, A. (2006). A classification of SQL-injection attacks and

countermeasures. Proceedings of the IEEE International Symposium on Secure Software
Engineering, 1, 13-15.

[8] Kamra, A., Terzi, E., & Bertino, E. (2008). Detecting anomalous access patterns in relational
databases. The VLDB Journal, 17(5), 1063-1077.

[9] Oracle. (2013). Oracle database security guide. Redwood Shores, CA: Oracle Corporation.
[10] Ramakrishnan, R., & Gehrke, J. (2003). Database management systems (3rd ed.). Boston, MA:

McGraw-Hill.
[11] Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). Database system concepts (6th ed.). New

York, NY: McGraw-Hill.
[12] Stonebraker, M., & Hellerstein, J. M. (1998). Readings in database systems (3rd ed.). Cambridge,

MA: The MIT Press.
[13] Valacich, J. S., Schneider, C., & Jessup, L. M. (2014). Information systems today: Managing in the

digital world (7th ed.). Upper Saddle River, NJ: Pearson.
[14] Widom, J., & Ceri, S. (Eds.). (1996). Active database systems: Triggers and rules for advanced

database processing. San Francisco, CA: Morgan Kaufmann Publishers Inc.
[15] Zaniolo, C., Ceri, S., Faloutsos, C., Ma, R. T. W., Snodgrass, R. T., & Subrahmanian, V. S. (2000).

Advanced database systems. San Francisco, CA: Morgan Kaufmann Publishers Inc.

