References
[1]. Dai Xuerui, Yuan Xue, Liu Pei, et al. (2019). Deeply Supervised Z-Style Residual Network Devotes to Real-Time Environment Perception for Autonomous Driving [J].IEEE, Transactions on Intelligent Transportation Systems,21(6): 2396-2408.
[2]. Zhang Die, & Liu Jiao. (2024). A Review of Perception Technologies for Autonomous Driving.Science & Technology Horizon, 14(18), 3-7.
[3]. Diewald Axel, Antes Theresa, Nuß Benjamin, et al. (2021).Implementation of Range Doppler Migration Synthesis for Radar Target Simulation[J]. 1-5. doi: 10.1109/vtc2021-spring51267.2021.9448793.
[4]. Zhu Xiaobo, Tan Xingwen. (2024). Autonomous Vehicle Environmental Perception and Sensor Fusion Technology.
[5]. Huang Xinyu, Wang Peng, Cheng Xinjing, et al. (2019). The ApolloScape Open Dataset for Autonomous Driving and Its Application [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 42( 10): 2702-2719.
[6]. Nabati Ramin, Qi Hairong. (2021). CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection [J], 1526-1535.
[7]. Vargas Jorge, Alsweiss Suleiman, Toker Onur, et al. (2021). An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions [J].Sensors, 21(16): 5397-5397.doi: 10.3390/s21165397.
[8]. Roriz Ricardo, Campos André, Pinto Sandro, et al. (2021). DIOR: A Hardware-Assisted Weather Denoising Solution for LiDAR Point Clouds [J]. IEEESensors Journal, 22(2): 1621-1628. doi: 10.1109/jsen.2021.3133873.