References
[1]. Almeida, C. R. D., Teodoro, A. C., & Gonçalves, A. (2021). Study of the urban heat island (UHI) using remote sensing data/techniques: A systematic review.Environments, 8(10), 105. https: //doi.org/10.3390/environments8100105
[2]. Yang, L., Qian, F., Song, D. X., & Zheng, K. J. (2016). Research on urban heat-island effect.Procedia Engineering, 169, 11–18. https: //doi.org/10.1016/j.proeng.2016.10.002
[3]. Nuruzzaman, M. (2015). Urban heat island: Causes, effects and mitigation measures—A review.International Journal of Environmental Monitoring and Analysis, 3(2), 67–73. https: //doi.org/10.11648/j.ijema.20150302.15
[4]. O’Malley, C., Piroozfar, P., Farr, E. R., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis.Sustainable Cities and Society, 19, 222–235. https: //doi.org/10.1016/j.scs.2015.08.004
[5]. Hayes, A. T., Jandaghian, Z., Lacasse, M. A., Gaur, A., Lu, H., Laouadi, A., & Wang, L. (2022). Nature-based solutions (NBS) to mitigate urban heat island (UHI) effects in Canadian cities.Buildings,12(7), 925. https: //doi.org/10.3390/buildings12070925
[6]. Leuzinger, S., Vogt, R., & Körner, C. (2010). Tree surface temperature in an urban environment.Agricultural and Forest Meteorology,150(1), 56–62. https: //doi.org/10.1016/j.agrformet.2009.08.006
[7]. Wang, C., Wang, Z. H., Wang, C., & Myint, S. W. (2019). Environmental cooling provided by urban trees under extreme heat and cold waves in US cities.Remote Sensing of Environment, 227, 28–43. https: //doi.org/10.1016/j.rse.2019.04.003
[8]. Rahman, M. A., Armson, D., & Ennos, A. R. (2015). A comparison of the growth and cooling effectiveness of five commonly planted urban tree species.Urban Ecosystems, 18(2), 371–389. https: //doi.org/10.1007/s11252-014-0407-7
[9]. Yin, Y., Li, S., Xing, X., Zhou, X., Kang, Y., Hu, Q., & Li, Y. (2024). Cooling benefits of urban tree canopy: A systematic review.Sustainability, 16(12), 4955. https: //doi.org/10.3390/su16124955
[10]. Rahman, M. A., Stratopoulos, L. M., Moser-Reischl, A., Zölch, T., Häberle, K. H., Rötzer, T., & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-analysis.Building and Environment, 170, 106606. https: //doi.org/10.1016/j.buildenv.2019.106606
[11]. Zheng, S., He, C., Guldmann, J. M., Xu, H., & Liu, X. (2023). Heat mitigation benefits of urban trees: A review of mechanisms, modeling, validation and simulation.Forests, 14(12), 2280. https: //doi.org/10.3390/f14122280
[12]. Liang, D., & Huang, G. (2023). Influence of urban tree traits on their ecosystem services: A literature review.Land,12(9), 1699. https: //doi.org/10.3390/land12091699
[13]. Wei, H., Chen, B., Wu, S., & Xu, B. (2023). Impact of early heat anomalies on urban tree cooling efficiency: Evidence from spring heatwave events in India.International Journal of Applied Earth Observation and Geoinformation, 120, 103334. https: //doi.org/10.1016/j.jag.2023.103334
[14]. He, C., Zhou, L., Yao, Y., Ma, W., & Kinney, P. L. (2021). Cooling effect of urban trees and its spatiotemporal characteristics: A comparative study.Building and Environment, 204, 108103. https: //doi.org/10.1016/j.buildenv.2021.108103
[15]. Zhou, W., Huang, G., Pickett, S. T., Wang, J., Cadenasso, M. L., McPhearson, T., & Wang, J. (2021). Urban tree canopy has greater cooling effects in socially vulnerable communities in the US.One Earth,4(12), 1764–1775. https: //doi.org/10.1016/j.oneear.2021.11.010
[16]. Wang, C., Wang, Z. H., & Yang, J. (2018). Cooling effect of urban trees on the built environment of contiguous United States.Earth's Future, 6(8), 1066–1081. https: //doi.org/10.1029/2018EF000891
[17]. Konarska, J., Uddling, J., Holmer, B., Lutz, M., Lindberg, F., Pleijel, H., & Thorsson, S. (2016). Transpiration of urban trees and its cooling effect in a high latitude city.International Journal of Biometeorology, 60(1), 159–172. https: //doi.org/10.1007/s00484-015-1014-x
[18]. Rahman, M. A., Armson, D., & Ennos, A. R. (2015). A comparison of the growth and cooling effectiveness of five commonly planted urban tree species.Urban Ecosystems, 18(2), 371–389. https: //doi.org/10.1007/s11252-014-0407-7
[19]. Tan, Z., Lau, K. K. L., & Ng, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment.Energy and Buildings, 114, 265–274. https: //doi.org/10.1016/j.enbuild.2015.06.031
[20]. Wang, J., Zhou, W., Jiao, M., Zheng, Z., Ren, T., & Zhang, Q. (2020). Significant effects of ecological context on urban trees' cooling efficiency.ISPRS Journal of Photogrammetry and Remote Sensing, 159, 78–89. https: //doi.org/10.1016/j.isprsjprs.2019.10.012
[21]. Wang, C., Wang, Z. H., Wang, C., & Myint, S. W. (2019). Environmental cooling provided by urban trees under extreme heat and cold waves in US cities.Remote Sensing of Environment, 227, 28–43. https: //doi.org/10.1016/j.rse.2019.04.003
[22]. Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices.Environmental Pollution, 159(8–9), 2078–2087. https: //doi.org/10.1016/j.envpol.2011.01.010
[23]. Weissert, L. F., Salmond, J. A., & Schwendenmann, L. (2014). A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions.Urban Climate, 8, 100–125. https: //doi.org/10.1016/j.uclim.2014.01.002
[24]. Orta-Ortiz, M. S., & Geneletti, D. (2022). What variables matter when designing nature-based solutions for stormwater management? A review of impacts on ecosystem services.Environmental Impact Assessment Review,95, 106802. https: //doi.org/10.1016/j.eiar.2022.106802
[25]. Ko, Y. (2018). Trees and vegetation for residential energy conservation: A critical review for evidence-based urban greening in North America.Urban Forestry & Urban Greening, 34, 318–335. https: //doi.org/10.1016/j.ufug.2018.08.004
[26]. Sangiorgio, V., Fiorito, F., & Santamouris, M. (2020). Development of a holistic urban heat island evaluation methodology.Scientific Reports, 10(1), 17913. https: //doi.org/10.1038/s41598-020-75008-6
[27]. Zeide, B. (1989). Accuracy of equations describing diameter growth. Canadian Journal of Forest Research,19(10), 1283–1286. https: //doi.org/10.1139/x89-195
[28]. Zeide, B. (1993). Analysis of growth equations.Forest Science,39(3), 594–616. https: //doi.org/10.1093/forestscience/39.3.594
[29]. Huang, Y. J., Akbari, H., Taha, H., & Rosenfeld, A. H. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings.Journal of Applied Meteorology and Climatology, 26(9), 1103–1116.
[30]. Simpson, J. R., & McPherson, E. G. (1998). Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento.Atmospheric Environment, 32(1), 69–74. https: //doi.org/10.1016/S1352-2310(97)00181-7
[31]. Monteith, J., & Unsworth, M. (2013). Principles of environmental physics: Plants, animals, and the atmosphere. Academic Press.
[32]. Xiao, Q., McPherson, E. G., Simpson, J. R., & Ustin, S. L. (1998). Rainfall interception by Sacramento's urban forest.Journal of Arboriculture,24(4), 235–244.
[33]. Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species.Forest Science, 49(1), 12–35. https: //doi.org/10.1093/forestscience/49.1.12
[34]. Chojnacky, D. C., Heath, L. S., & Jenkins, J. C. (2014). Updated generalized biomass equations for North American tree species.Forestry, 87(1), 129–151. https: //doi.org/10.1093/forestry/cpt053
[35]. Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States.Urban Forestry & Urban Greening,4(3–4), 115–123. https: //doi.org/10.1016/j.ufug.2006.01.007
[36]. Climate Central. (2024). Urban heat hot spots in 65 cities [Dataset and maps]. Retrieved August 19, 2025, from https: //www.climatecentral.org/climate-matters/urban-heat-islands-2024