References
[1]. Saberironaghi, A., Ren, J., & El-Gindy, M. (2023). Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review.Algorithms, 16(2), 95. DOI: 10.3390/a16020095
[2]. Chen, F., Fu, L., Zhang, Y., Li, J., Zhang, Q., & Bi, S. (2025). A Review of Deep Learning-Based Steel Surface Defect Detection.Academic Journal of Science and Technology,15(1), 198-202. DOI: 10.54097/g36nm962
[3]. Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions. arXiv preprint arXiv: 2404.07214. arXiv: 2404.07214
[4]. Qwen Team, Alibaba Group. (2025). Qwen2.5-VL Technical Report. arXiv preprint arXiv: 2502.13923. arXiv: 2502.13923
[5]. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-Rank Adaptation of Large Language Models. International Conference on Learning Representations (ICLR). arXiv: 2106.09685
[6]. Lei, S., Hua, Y., & Zhihao, S. (2025). Revisiting Fine-Tuning: A Survey of Parameter-Efficient Techniques for Large AI Models. Preprints.org. DOI: 10.20944/preprints202504.0743.v1
[7]. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.Advances in Neural Information Processing Systems (NIPS), 28, 91-99.
[8]. Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning. arXiv preprint arXiv: 2104.08691. arXiv: 2104.08691
[9]. Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv: 2207.02696. arXiv: 2207.02696
[10]. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.Advances in Neural Information Processing Systems (NIPS),28, 91-99.