References
[1]. Smith, J. M. (1950). Introduction to chemical engineering thermodynamics.Journal of Chemical Education, 27(10), 584.
[2]. Barron, R. F. (2007). Advances in cryogenic principles. In Cryogenic Engineering (pp. 105-119). New York, NY: Springer New York.
[3]. Sandrock, G. (1999). A panoramic overview of hydrogen storage alloys from a gas reaction point of view.Journal of alloys and compounds, 293, 877-888.
[4]. Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1.Journal of the American Chemical Society, 75(1), 215-219.
[5]. Dillon, A. C. (1996). Storage of hydrogen in single-walled carbon nanotubes.Nature, 386, 147.
[6]. Teichmann, D., Arlt, W., & Wasserscheid, P. (2012). Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy.International journal of hydrogen energy, 37(23), 18118-18132.
[7]. Züttel, A. (2004). Hydrogen storage methods.Naturwissenschaften, 91, 157-172.
[8]. Bossel, U. (2006). Does a hydrogen economy make sense?Proceedings of the IEEE, 94(10), 1826-1837.
[9]. Yamashita, A., Kondo, M., Goto, S., & Ogami, N. (2015). Development of high-pressure hydrogen storage system for the Toyota “Mirai” (No. 2015-01-1169). SAE Technical Paper.
[10]. Schlapbach, L., & Züttel, A. (2001). Hydrogen-storage materials for mobile applications.Nature, 414(6861), 353-358.
[11]. Ishikawa, K. (2019). Hydrogen energy supply chain from Australia to Japan. International CCS value chain developments panel. Kawasaki Heavy Industries, Ltd.
[12]. Zheng, C., Zhou, D., Feng, D., Ren, H., & Zhang, Y. (2023). Effect of Y content on the hydrogen storage properties of ball-milled Mg2. 4-xYxNi (x= 0.05, 0.1, 0.15, 0.2) alloys.Journal of Physics and Chemistry of Solids, 178, 111320.
[13]. Xu, Y., Zhou, Y., Li, Y., & Ding, Z. (2024). Research progress and application prospects of solid-state hydrogen storage technology.Molecules, 29(8), 1767.
[14]. Naquash, A., Agarwal, N., & Lee, M. (2024). A review on liquid hydrogen storage: current status, challenges and future directions.Sustainability, 16(18), 8270.
[15]. Naquash, A., Riaz, A., Qyyum, M. A., Kim, G., & Lee, M. (2022). Process knowledge inspired opportunistic approach for thermodynamically feasible and efficient design of hydrogen liquefaction process.International Journal of Hydrogen Energy, 48(68), 26583–26598. https: //doi.org/10.1016/j.ijhydene.2022.11.163
[16]. Xu, Y., Zhou, Y., Li, Y., & Ding, Z. (2024). Research progress and application prospects of solid-state hydrogen storage technology.Molecules, 29(8), 1767.
[17]. Klebanoff, L. (Ed.). (2012). Hydrogen storage technology: materials and applications. CRC Press. Knowledge inspired opportunistic approach for thermodynamically feasible and efficient design of hydrogen liquefaction process.International Journal of Hydrogen Energy, 48(68), 26583-26598.