References
[1]. Zhou, X., Dong, X., Li, C., Bai, Y., Xu, Y., Cheung, K. C., See, S., Song, X., Zhang, R., Zhou, X., & Zhang, N. L. (2024). TCM-FTP: Fine-Tuning Large Language Models for Herbal Prescription Prediction. In2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).IEEE. https: //doi.org/10.1109/BIBM62325.2024.10822451
[2]. Kang, B., Lee, S., Bae, H., & Kim, C. (2024). Current Status and Direction of Generative Large Language Model Applications in Medicine: Focusing on East Asian Medicine.Journal of Physiology & Pathology in Korean Medicine, 38(2), 49–58. https: //doi.org/10.15188/kjopp.2024.04.38.2.49
[3]. Li, W., Ge, X., Liu, S., Xu, L., Zhai, X., & Yu, L. (2023). Opportunities and challenges of traditional Chinese medicine doctors in the era of artificial intelligence. Frontiers in Medicine,10(1), Article 1336175. https: //doi.org/10.3389/fmed.2023.1336175
[4]. Karatas, M., Zare, Z., & Zheng, Y. (2025). Transforming Preventive Healthcare with Machine Learning Technologies.Journal of Operations Intelligence,3(1): 109-125. https: //doi.org/10.31181/jopi31202538
[5]. Zhu, J., Liu, X., & Gao, P. (2025). Digital intelligence technology: New quality productivity for precision traditional Chinese medicine.Frontiers in Pharmacology, 16(4), Article 1526187. https: //doi.org/10.3389/fphar.2025.1526187
[6]. Cui, J., & Xu, J. (2025). Application status quo and prospects of artificial intelligence and information technology for modernization of four diagnostic methods in traditional Chinese medicine.Shanghai Journal of Traditional Chinese Medicine, 59(1), 7–12. https: //doi.org/10.16305/j.1007-1334.2025.z20240903008
[7]. Cao, X., Zhang, D., Jin, C., Zhang, Z., & Xue, C. (2025). Multi-Feature Facial Complexion Classification Algorithms Based on CNN.Preprints,Article 2025041664. https: //doi.org/10.20944/preprints202504.1664.v1
[8]. Wang, B., Chen, S., Song, J., Huang, D., & Xiao, G. (2024). Recent advances in predicting acute mountain sickness: From multidimensional cohort studies to cutting-edge model applications.Frontiers in Physiology, 15, Article 1397280. https: //doi.org/10.3389/fphys.2024.1397280
[9]. Ren, Y., Luo, X., Wang, Y., Li, H., Zhang, H., Li, Z., Lai, H., Li, X., Ge, L., Estill, J., Zhang, L., Yang, S., Chen, Y., Wen, C., & Bian, Z. (2024). Large language models in traditional Chinese medicine: A scoping review.Journal of Evidence-Based Medicine, 5(1), 57–67. https: //doi.org/10.1111/jebm.12658
[10]. Song, Z., Chen, G., & Chen, C. Y. C. (2024). AI empowering traditional Chinese medicine?Chemical Science,15(41), 16844–16886. https: //doi.org/10.1039/d4sc04107k
[11]. Yang, D., Wei, J., Xiao, D., Wang, S., Wu, T., Li, G., Li, M., Wang, S., Chen, J., Jiang, Y., Xu, Q., Li, K., Zhai, P., & Zhang, L. (2024). PediatricsGPT: Large language models as Chinese medical assistants for pediatric applications.arXiv preprint arXiv: 2405.19266. http: //arxiv.org/abs/2405.19266
[12]. Zhang, H., Wang, X., Meng, Z., Chen, Z., Zhuang, P., Jia, Y., Xu, D., & Guo, W. (2024). Qibo: A large language model for traditional Chinese medicine.Expert Systems with Applications,284, Article 127672. https: //doi.org/10.1016/j.eswa.2025.127672
[13]. Xu, S., Zhou, Y., Liu, Z., Wu, Z., Zhong, T., Zhao, H., Li, Y., Jiang, H., Pan, Y., Chen, J., Lu, J., Zhang, W., Zhang, T., Zhang, L., Zhu, D., Li, X., Liu, W., Li, Q., Sikora, A., … Liu, T. (2024). Towards next-generation medical agent: How o1 is reshaping decision-making in medical scenarios.arXiv preprint arXiv: 2411.14461. http: //arxiv.org/abs/2411.14461
[14]. Yim, W. W., Fu, Y., Ben Abacha, A., & Yetisgen, M. (2024). To err is human, how about medical large language models? Comparing pre-trained language models for medical assessment errors and reliability. In Proceedings of the 2024 Joint International Conference on Computational Linguistics,Language Resources and Evaluation(pp. 16211–16223).
[15]. Liu, L., Yang, X., Lei, J., Liu, X., Shen, Y., Zhang, Z., Wei, P., Gu, J., Chu, Z., Qin, Z., & Ren, K. (2024). A survey on medical large language models: Technology, application, trustworthiness, and future directions.IEEE Journal of Biomedical and Health Informatics, 14(8), 1–26. http: //arxiv.org/abs/2406.03712
[16]. Lucas, H. C., Upperman, J. S., & Robinson, J. R. (2024). A systematic review of large language models and their implications in medical education.Medical Education,58(11), 1276–1285. https: //doi.org/10.1111/medu.15402
[17]. Hamid, R., & Brohi, S. (2024). A review of large language models in healthcare: Taxonomy, threats, vulnerabilities, and framework.Big Data and Cognitive Computing, 8(11), Article 161. https: //doi.org/10.3390/bdcc8110161
[18]. AlSaad, R., Abd-alrazaq, A., Boughorbel, S., Ahmed, A., Renault, M.-A., Damseh, R., & Sheikh, J. (2024). Multimodal large language models in healthcare: Applications, challenges, and future outlook.Journal of Medical Internet Research, 26, Article e59505. https: //doi.org/10.2196/59505