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Abstract. Stroke can lead to brain dysfunction and, in severe cases, may result in long-term paralysis, aphasia, or memory
impairment, significantly affecting daily life. Acute stroke episodes can be life-threatening and require timely treatment to
minimize sequelae. Traditional stroke detection methods are often insensitive to early subtle lesions, prone to misdiagnosis or
missed diagnosis, and incapable of real-time dynamic monitoring of disease progression. To overcome these limitations, this
study proposes a stroke medical image classification method based on the Wavelet Scattering Network (WSN), aiming to
improve the detection of stroke lesions. The WSN classifies medical images through multi-scale wavelet transformation and
hierarchical nonlinear operations. The core principle involves first decomposing the image using wavelet filters to extract local
features such as multi-scale edges and textures. This is followed by modulus operations to eliminate phase variations and
enhance translation invariance, and then layer-by-layer downsampling to compress feature dimensions. Finally, stable low-
dimensional feature vectors are generated for classification. The proposed method was applied to Dataset 1 and the stroke dataset
from the Teknofest-2021 Medical AI Competition. The results show that the method achieved an accuracy of 88.69% on Dataset
1 and 93.75% on the Teknofest-2021 dataset. Compared with traditional methods such as Convolutional Neural Networks (CNN)
and Long Short-Term Memory Networks (LSTM), the proposed approach improves classification accuracy by 7.33%—11.33%.
The WSN-based method effectively overcomes the limitations of traditional stroke medical image classification and diagnosis
techniques, offering a novel technical approach and solution for this field.
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1. Introduction

Stroke is the second leading cause of death globally and the primary cause of long-term disability among adults. Its high
disability rate and complex sequelae not only lead to a severe decline in patients' quality of life but also impose a substantial
medical and economic burden on families and society. According to the latest data from the World Health Organization and the
Global Burden of Disease Study, there are approximately 110 million stroke survivors worldwide, with around 13.7 million new
cases annually. Moreover, with the accelerating pace of population aging and the increasing burden of metabolic diseases, the
global incidence of stroke is projected to rise by 34% by 2030, presenting a daunting challenge for prevention and control [1].
Therefore, achieving accurate detection of stroke is of great significance for early prevention and timely treatment.

Traditional stroke detection methods primarily include electroencephalogram (EEG) [2], neurological function assessment
[3], and ultrasound examination [4]. EEG utilizes multi-angle X-ray beams to penetrate the skull and reconstruct cross-sectional
images through computer processing, enabling rapid differentiation between cerebral hemorrhage (high-density shadows) and
ischemic infarction (low-density lesions). However, this method has limited resolution in detecting small infarcts or posterior
fossa lesions and poses a risk of radiation exposure. Neurological function assessment employs the National Institutes of Health
Stroke Scale (NIHSS), which quantifies stroke severity through 11 clinical evaluations (such as consciousness, visual fields,
facial palsy, and limb motor function). Nonetheless, its accuracy is highly dependent on physicians’ expertise and is less sensitive
to posterior circulation strokes. Ultrasound examination detects carotid plaques, stenosis, and changes in intracranial
hemodynamics via ultrasound waves to assess stroke risk. However, this approach is highly operator-dependent and has limited
capacity to visualize distal vascular lesions. To address the limitations of these methods, this study adopts a medical image-based
approach for stroke detection. Compared with traditional techniques, medical imaging offers significant advantages in
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objectivity, resolution, and lesion visualization. Unlike EEG, which has limited spatial resolution and only indirect correlations
with brain function, medical imaging can directly localize structural abnormalities. Compared with the subjectivity and delayed
symptom presentation of neurological assessments, image analysis can reveal subtle pathological changes at early stages.
Furthermore, in contrast to the acoustic window limitations and operator dependence of ultrasound, multimodal imaging
technologies—such as perfusion imaging—can comprehensively quantify cerebral hemodynamic parameters. When combined
with artificial intelligence algorithms, these technologies enable rapid, accurate, and automated diagnosis, providing highly
reliable and visualized evidence to support clinical decision-making [5].

In recent years, deep learning models have been widely applied in the field of medical image classification. Examples include
Convolutional Neural Networks (CNN) [6], Residual Networks with Convolutional Block Attention Modules (ResNet-CBAM)
[7], Vision Transformers (ViT) [8], and Visual Geometry Group Networks (VGG) [9], among others. For instance, Gautam et al.
proposed a method combining image fusion and CNN. By employing multi-focus image fusion as a preprocessing step to
enhance the quality of CT images, they conducted two experiments on different datasets to validate the approach. The results
showed classification accuracies of 98.33% on Dataset 1 and 98.77% in the second experiment [10]. However, this method
demonstrates several limitations in medical image processing, including strong dependence on data, limited generalization
capability, and a lack of interpretability. Tahyudin et al. proposed the ResNet-CBAM model, which integrates a residual network
architecture with a convolutional block attention module to enhance the detection of critical features in CT images. The results
indicated that the model achieved a classification accuracy of 95% for distinguishing normal from stroke images, with precision,
recall, and F1 scores all exceeding 93% for stroke and non-stroke categories [11]. While ResNet-CBAM improves feature
detection performance, the introduction of attention modules increases computational cost and necessitates a larger volume of
training data; otherwise, the model is prone to overfitting under small-sample conditions. Yopiangga et al. employed CT scan
images and the ViT method. By preprocessing patient CT images and segmenting them to localize key regions, classification
efficiency was improved. Based on the pretrained Vision Transformer Base-16 model and after parameter optimization, the
approach achieved a test accuracy of 91% on the stroke classification task [12]. Nevertheless, the method’s heavy reliance on
large-scale labeled datasets, high computational complexity resulting in substantial resource consumption, and lack of prior
knowledge of local features may lead to omission of subtle lesion details in medical image analysis. Sakinah et al. proposed a
method based on the VGGNet-16 architecture. After enhancing CT image quality during preprocessing, a CNN model based on
the VGGNet-16 structure achieved a training accuracy of 99.62% and a test accuracy of 99.5% in stroke classification, following
parameter optimization. However, this method faces issues such as high computational cost, risk of overfitting, and insufficient
sensitivity of deep networks to subtle lesions in medical images, making it difficult to adaptively optimize the expression of local
features [13].

To address the limitations of the aforementioned methods, this study proposes the use of a Wavelet Scattering Network
(WSN) for the classification of stroke CT images. Compared with traditional deep learning models such as CNN, ResNet-
CBAM, ViT, and VGG, WSN exhibits distinct advantages in medical image classification. Its predefined filter bank based on
wavelet transforms enables multi-scale and multi-directional geometric feature extraction, significantly reducing dependence on
large-scale annotated datasets and mitigating the risk of overfitting caused by redundant parameters in CNN and VGG models. In
contrast to the computational complexity introduced by the attention mechanisms in ResNet-CBAM, WSN achieves rotational
and translational invariance through mathematically modeled hierarchical scattering paths, allowing it to stably characterize
morphological features of lesions even in the presence of noise interference [14]. Furthermore, unlike ViT, which requires
massive datasets to support global modeling via self-attention, WSN is capable of efficiently capturing subtle pathological
changes—such as early ischemic diffusion abnormalities—even under limited sample conditions, as is common in small-scale
stroke datasets. In addition, WSN offers theoretical interpretability, making it a robust, low-cost, and tuning-free solution for
medical image classification.

2. Dataset

2.1. Stroke dataset

The dataset used in this study was compiled from the clinical Picture Archiving and Communication System (PACS) records of
three institutions: Stanford University (Palo Alto, California, USA), the Federal University of Sdo Paulo (Sdo Paulo, Brazil), and
Thomas Jefferson University Hospital (Philadelphia, Pennsylvania, USA) [15]. It includes annotated head CT scans representing
five common subtypes of intracranial hemorrhage: subarachnoid hemorrhage, intraventricular hemorrhage, subdural hemorrhage,
epidural hemorrhage, and intraparenchymal hemorrhage. The total number of images amounts to 874,035. The dataset was
curated using label distributions from each contributing site to standardize exam distributions in the merged testing and
validation sets. Data from each institution was partitioned into cohorts of 500 examinations, with the last 100 examinations from
each cohort selected for the testing and validation sets. These were independently reviewed by two additional neuroradiologists.
Fifteen percent of the triple-reviewed examinations were used for the final test set, while the remaining 5% were used for
validation. Each series in the final dataset contains between 20 and 60 axial images with slice thicknesses ranging from 3 to 5
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mm. After the curation process, the final dataset comprised 25,312 examinations, of which 21,784 were used for training and
validation, and 3,528 for testing. Although this use case successfully captures the intended complexity and heterogeneity, it
required a substantial amount of expert manual annotation. The dataset is publicly available on RSNA under the CC-BY-NC 4.0
license. Users must sign a data usage agreement and provide proper citation.Dataset access link:
http://pubs.rsna.org/doi/full/10.1148/ryai.2020190211

2.2. Teknofest-2021 stroke dataset

This dataset originates from the Teknofest-2021 Medical Artificial Intelligence Competition: Stroke Dataset, which contains
anonymized head computed tomography (CT) images [16]. The dataset was curated, compiled, and annotated by seven
radiologists. For the planned training and testing datasets, data recorded during 2019 and 2020 were centrally filtered using
various codes and selection criteria from the e-Pulse system and the Remote Radiology System of the Ministry of Health of the
Republic of Tiirkiye. To construct the dataset, a total of 877 CT and 230 MRI studies were collected from 819 unique cases. The
final training dataset consists of 6,651 images: 4,427 images show no evidence of stroke, chronic ischemic findings, or contain
only normal findings; 1,131 images exhibit hyperacute/acute ischemic stroke findings; and 1,093 images show hemorrhagic
stroke findings. The dataset preparation was organized by the Ministry of Health of the Republic of Tiirkiye. This study received
ethical approval from the Ministry, and informed consent was waived due to the retrospective analysis of anonymized data from
the national health database. Dataset access link: https://pmc.ncbi.nlm.nih.gov/articles/PMC9797774/

3. Method

3.1. Wavelet scattering transform

The wavelet transform involves convolving a signal with a set of wavelet families obtained by rotating and scaling a mother
wavelet, thereby generating wavelet feature coefficients [17]. Specifically, let 4;,(u) = 2 %4, (277u) be the directional
mother wavelet function, where y denotes direction and j denotes scale; let ¢;(u) =27*/¢ (277u) represent the scaling
function at the maximum scale J. Then, the wavelet transform is defined as Equation (1):

WJf: {AJfaWj,Yf}j<J (1)

In Equation (1), W;, f(a:) = f*wm (x) represents the high-frequency information at scale j and direction -y .
A;f = f*¢; represents the low-frequency information at the maximum scale J. Therefore, the wavelet transform produces a set
of wavelet feature coefficients {W; f}j -y across different directions and scales. Due to the local deformation, scale, and

rotational invariance properties of the wavelet coefficients, they are commonly applied in processing images, speech, and other
signals that can be transformed into the time-frequency domain. However, wavelet coefficients are sensitive to local translations
and thus do not possess translation invariance.

Wavelet scattering applies a modulus operation to the wavelet transform coefficients primarily because the mean of the
wavelet coefficients is zero. After linear transformation, the mean remains zero; therefore, by applying a nonlinear operation
(taking the modulus), a non-zero wavelet coefficient is obtained, enabling it to carry meaningful information.

The modulus of the wavelet transform is defined as Equation (2):

Uxf(z) = [f *4a(=)| @

At this stage, the wavelet features, which have undergone nonlinear operations, are convolved with the scaling function for
averaging (low-pass filtering) to obtain wavelet features that possess both translation invariance and stability to local
deformations, as shown in Equation (3):

SiNf = 1fYa(z)| *¢; 3)

Equation (3) is also referred to as the wavelet scattering transform.
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3.2. Wavelet scattering representation

After the signal undergoes the wavelet scattering transform, the averaging operation makes the wavelet feature coefficients
relatively stable; however, it also suppresses high-frequency components, resulting in some information loss and reducing the
discriminative power of the wavelet feature coefficients. To recover high-frequency information, the wavelet modulus can be
further decomposed at relatively larger scales (which must be smaller than the maximum scale). Nevertheless, these features still
lack translation invariance, so further modulus operations and averaging (low-pass filtering) are required to achieve stability of
the feature coefficients. This process is illustrated in Equation (4):

S, Aol f = (IF ", () *a, (2)) 65 4)

In Equation (4), where A1 < Ag < J .

Each averaging of features is accompanied by the loss of high-frequency information. Therefore, to ensure energy
conservation, it is necessary to iteratively apply the wavelet scattering transform to the coefficients from the previous layer.
Consequently, the obtained wavelet scattering feature coefficients are expressed as shown in Equation (5):

S Al f = (o (1 x @) ¥y (2) [ *n (2) |-+ *a, (2) | ¥ ©)

In Equation (5), where A1 < ds < ... <A, < J.
This process can be illustrated as shown in Figure 1:

Figure 1. Propagation diagram of a signal through wavelet scattering

The propagation process begins with the input signal f . At each layer, after applying the wavelet transform modulus
followed by convolution with the scaling function for averaging to extract features, the wavelet modulus is convolved with
higher-frequency filters from the previous layer to recover the high-frequency components lost in the preceding layer. Therefore,
each layer produces two outputs: one is the wavelet scattering feature coefficient S;(X)f , obtained by convolution with a low-
pass filter, which yields a stable signal; the other is the wavelet transform modulus U) f , serving as the input for the next layer.
To recover the lost high-frequency information, U)f is further decomposed using higher-frequency filters at relatively larger
scales. These two outputs can be expressed by Equation (6):

Unf ={Uaf, SiNFY={IF*al, [£*9al*a} (6)

Equation (6) is also referred to as the wavelet scattering propagation operator.
The signal is iteratively processed layer by layer, resulting in a series of scattering coefficient features

{5(0), 5(1), ---, S(n)}.

3.3. Wavelet scattering algorithm

3.3.1. Wavelet scattering network structure

Wavelet scattering can be described as the process where the original signal is filtered by wavelet filters to obtain high-frequency

and low-frequency information. The low-frequency information corresponds to the desired features, but these features require
nonlinear and stationary transformations to ensure invariance to signal deformations [18]. Meanwhile, the high-frequency



78 | Advances in Engineering Innovation | Vol.16 | Issue 7

information can be further processed to extract additional features. This process of wavelet transform followed by nonlinear
transformation is repeated iteratively, continuously extracting features from the original signal.

Let the scattering path be P = {\1, A2, A3, ..., An} , where m denotes the maximum path length. Accordingly,
scattering feature coefficients of orders from 1 to m , denoted as {S;[¢]f, S;[Ai]f, ..., Sj[A1,...,An]f} » can be obtained.
Based on Section 3.2, the wavelet scattering convolutional neural network is illustrated in Figure 2 as follows:
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Figure 2. Wavelet scattering convolutional neural network

The network structure of wavelet scattering is shown in the figure above. The output of each layer in the network corresponds
to the extracted features, referred to as the wavelet scattering transform. The feature coefficients can be expressed by Equation

(7):

[ ] Sjlelf o
Pai
5[4)1 TN
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Its network structure is similar to that of deep Convolutional Neural Networks (CNNs), as both obtain features of the original
input through convolution kernels (linear transformations) followed by nonlinear transformations (modulus operation) layer by
layer. However, there are key differences:

(1) The convolution kernels in wavelet scattering use predefined wavelet filters, which extract optimal features by rotating
and scaling the mother wavelet. Therefore, the network contains no trainable weights, significantly reducing computational
complexity. In contrast, deep CNNs require learning convolution kernels through feedback-based iterative computations,
resulting in higher computational costs.

(2) In WSN, each layer produces feature outputs, and the final feature representation is formed by concatenating the outputs
from all layers. Conversely, in deep CNNs, only the final layer’s output serves as the feature descriptor for the object.

3.3.2. Wavelet scattering algorithm procedure

Based on the aforementioned WSN structure, the pseudo-code for the wavelet scattering transform algorithm is presented in
Table 1 below:
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Table 1. Wavelet scattering algorithm procedure

Step 1: Input the image f.

Step 2: Design the wavelet kernels according to the image size, then sequentially convolve the modulus output from the previous layer.
Let Uy (0)f = f
form=1: myq, —1do
Forj=1:J-1and 7€ G do

SN =Usqf17*bs

Ujnf = Uj-14] iy

end for
end for
Step 3: Obtain the final feature set according to the wavelet scattering results: Sy f

3.4. Evaluation metrics

This study selects accuracy, precision, recall, and F1 score as the evaluation metrics for the WSN. The definitions of these four
metrics are as follows [19]:
(1) Accuracy is the proportion of correctly predicted samples to the total number of samples, as shown in Equation (8):

TP+ FN
Accuracy = ®)
TP+ FP+FN+TN

(2) Precision is the proportion of true positive samples among those predicted as positive by the model, as shown in Equation

9):

TP
Precisoin = ——— )
TP+ FP

(3) Recall is the proportion of true positive samples correctly predicted by the model among all actual positive samples, as
shown in Equation (10):

TP
Recall = m (10)

(4) The F1 score is the harmonic mean of precision and recall, providing a comprehensive evaluation of model performance,
as shown in Equation (11):

1 _5 Precision *Recall an
seore = Precision + Recall

In the above Equations (8) to (11), True Positives (TP) refer to samples predicted as positive that are actually positive. False
Positives (FP) are samples predicted as positive but are actually negative. False Negatives (FN) are samples predicted as negative
but are actually positive. True Negatives (TN) refer to samples predicted as negative that are actually negative.
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4. Results
4.1. Classification results on dataset 1

This study selected stroke CT images provided by three institutions (Stanford University, Federal University of Sao Paulo, and
Thomas Jefferson University). The images were annotated with five types of hemorrhagic symptoms: subarachnoid hemorrhage,
intraventricular hemorrhage, subdural hemorrhage, epidural hemorrhage, and intracerebral hemorrhage. The dataset comprises a
total of 874,035 images. The experiment was implemented using MATLAB 2020, with R as the programming language. The
number of wavelet layers was set to 2, and the Marr wavelet was selected. The training and testing datasets were split at a ratio of
7:3. Classification was performed using a Support Vector Machine (SVM). The classification results are shown in Figure 3.
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Figure 3. Classification results on dataset 1

As shown in Figure 3, the WSN method proposed in this study achieved an accuracy of 88.69%, precision of 87.36%, recall
of 88.91%, and an F1 score of 88.13% in classifying the five types of stroke-related symptoms. The values of these metrics are
relatively close, collectively indicating that the classification model performs well on this dataset.

4.2. Classification results on dataset 2

The stroke dataset consists of axial head Computed Tomography (CT) images, including a total of 6,653 brain CT slices. Among
these, 4,428 images belong to the non-stroke category, 1,131 images to the ischemic stroke category, and 1,094 images to the
hemorrhagic stroke category. In this study, the training and testing sets were divided at a ratio of 8:2. The implementation was

carried out using MATLAB 2020, with R as the programming language. The classification results are presented in Table 2.

Table 2. Classification results on dataset 2

Evaluation Metric Accuracy Precision Recall F1 Score
Overall Value (%) 93.75 92.16 92.87 92.51

Table 2 presents the classification results of stroke recognition on Dataset 2 using the WSN method. The accuracy reached
93.75%, precision was 92.16%, recall was 92.87%, and the F1 score was 92.51%. These metrics demonstrate the strong
performance of the proposed method in the task of stroke disease recognition.



Advances in Engineering Innovation | Vol.16 | Issue 7 | 81

5. Discussion

5.1. Comparison with other methods

To demonstrate the significant advantages of the proposed method in terms of accuracy and computational complexity, this study
conducted a comparison on Dataset 1 using other traditional image classification methods, such as Convolutional Neural

Networks (CNN) and Long Short-Term Memory networks (LSTM). The comparison results are presented in Table 3.

Table 3. Comparison between the proposed method and other methods

Method Accuracy Testing Time (ms)
CNN 77.36 86
long short-term memory, LSTM [20] 81.79 74
Graph neural network GCN [21] 84.72 67
Capsule Neural Network, CapsNet [22] 86.88 46
WSN (This study) 88.69 41

As shown in Table 3, when classifying stroke CT images using CNN, LSTM, GCN, CapsNet, and the proposed WSN
method, WSN achieved the best performance with an accuracy of 88.69% and a testing time of 41 ms. This was followed by
CapsNet with an accuracy of 86.88%. The accuracies of GCN, LSTM, and CNN were 84.72%, 81.79%, and 77.36%,
respectively.

WSN possesses unique advantages in medical image classification. Its filters are predefined wavelet filters that do not require
parameter learning from training samples, thus eliminating reliance on large-scale datasets and enabling strong performance even
with small sample sizes [23]. Through semi-discrete wavelet transform and nonlinear modulus operations, WSN extracts signal
features with desirable properties such as translation invariance and deformation stability. These properties are rigorously proven
mathematically, addressing the theoretical gaps present in CNNs [24]. Moreover, compared to Long Short-Term Memory
networks (LSTMs), which are primarily designed for sequence data and are less specialized in image classification, WSN
focuses more directly on image feature extraction and classification. Compared to Graph Neural Networks (GCNs), WSN
benefits from more mature theories and methods for fundamental image feature extraction. Relative to Capsule Networks
(CapsNets), WSN avoids issues such as slow training and difficulties in recognizing certain scenarios, enabling more stable and
efficient feature extraction and classification in medical image tasks.

5.2. Limitations and future prospects

Although WSN demonstrates significant advantages in overcoming the limitations of traditional methods in stroke medical
image classification, certain limitations remain. For example, it may be less flexible and efficient than some deep neural
networks in finely capturing complex lesion details and in multimodal data fusion. Additionally, there is room for further
improvement in computational efficiency and real-time applicability of the model. Future research could explore deeper
integration of WSN with other deep learning models, such as LSTM, to leverage complementary strengths and enhance the
capacity for processing complex medical images. Investigations into optimizing network architectures to improve computational
efficiency and better suit real-time dynamic monitoring scenarios are also warranted. Furthermore, enhancing the fusion of
multimodal medical data combined with more clinical information could further improve classification accuracy and clinical
utility, thereby providing stronger technical support for precise diagnosis and treatment of stroke.

6. Conclusion

This study proposes the application of the Wavelet Scattering Network (WSN) for the classification of stroke CT images,
successfully overcoming the shortcomings of traditional detection methods, such as reduced sensitivity to early subtle lesions
and high misdiagnosis rates. On a multicenter dataset containing five hemorrhage subtypes, WSN achieved an accuracy of
88.69% (precision 87.36%, recall 88.91%). On a three-class dataset (ischemic/hemorrhagic/normal, n=6653), the accuracy
improved to 93.75% (F1 score 92.51%). Compared with benchmark models such as CNN and LSTM, WSN significantly
improved accuracy by 7.33—11.33%, with a detection speed of 41 ms per case. Compared to other methods, including CNN and
LSTM, this approach offers stronger theoretical robustness, higher efficiency with small samples, and clinical interpretability,
providing a novel solution for stroke disease detection.
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