Design and simulation of a 300 MHz Balanced Homodyne Detector for quantum photonics
Research Article
Open Access
CC BY

Design and simulation of a 300 MHz Balanced Homodyne Detector for quantum photonics

Jiayi Yang 1*
1 The Hong Kong Polytechnic University
*Corresponding author: 24039279g@connect.polyu.hk
Published on 10 July 2025
Journal Cover
AEI Vol.16 Issue 7
ISSN (Print): 2977-3911
ISSN (Online): 2977-3903
Download Cover

Abstract

Balanced Homodyne Detection (BHD), introduced in the 1970s, enables highly sensitive detection of phase and amplitude variations in weak light. Initially developed as an advanced optical detection technique, it rapidly became essential in quantum optics for accurately quantifying quadrature components and detecting squeezed states at the shot-noise limit. Today, BHD plays a critical role in diverse fields such as high-precision quantum metrology, gigabit speed optical communications, gravitational wave detection, and large-scale quantum information systems. In this study, a BHD simulation was implemented with a 90° phase difference between the local oscillator and the signal, thus enabling the extraction of the phase quadratureP^component of the optical field.

Keywords:

Balanced Homodyne Detector, 1550nm optical detection, quantum optics PCB design

View PDF
Yang,J. (2025). Design and simulation of a 300 MHz Balanced Homodyne Detector for quantum photonics. Advances in Engineering Innovation,16(7),65-73.

References

[1]. Assouly, R., Dassonneville, R., Peronnin, T., Bienfait, A., & Huard, B. (2023). Quantum advantage in microwave quantum radar.Nat. Phys.,19(6), 2504.

[2]. Protte, M. (2023). Building Blocks for Integrated Homodyne Detection with Superconducting Nanowire Single-Photon Detectors. Doctoral dissertation,Universitätsbibliothek.

[3]. Braunstein, S., & Crouch, D. (1991). Fundamental limits to observations of squeezing via balanced homodyne detection.Phys.Rev. A.43. 330-337. 10.1103/PhysRevA.43.330.

[4]. Hua, Z., Qing, L., & Huilong, J. (2017). Phase stabilization method based on optical fiber link.J. Commun.,12(6), 327–332.

[5]. Ghalaii, M., & Pirandola, S. (2022). Quantum communications in a moderate-to-strong turbulent space.Commun.Phys.,5, 38.

[6]. Fritschel, P., Evans, M., & Frolov, V. (2014). Balanced homodyne readout for quantum limited gravitational wave detectors.Opt. Express,22, 4224–4234.

[7]. Oh, J., Cho, J., & Rhee, J.-K.K. (2023). Continuous-variable quantum key distribution with time-division dual-quadrature homodyne detection.Opt. Express,31, pp. 30669–30681.

[8]. Zhuang, Q.T., Bienfait, A., & Huard, B. (2023). Quantum advantage on the radar.Nat. Phys.,19(7), 568.

[9]. Waller, E.H., Keil, A., & Friederich, F. (2023). Quantum range-migration-algorithm for synthetic aperture radar applications.Sci. Rep.,13(7), 11436–11443.

[10]. Reichert, M., Di Candia, R., Win, M.Z., & Sanz, M. (2022). Quantum-enhanced doppler radar/lidar.NPJ Quantum Inf.,8(12), 147.

[11]. Chang, C.W.S., Vadiraj, A. M., Bourassa, J., Balaji, B., & Wilson, C.M. (2018). Quantum-enhanced noise radar.Appl. Phys. Lett.,114(12), 112601.

[12]. M. Casariego, E. Z. Cruzeiro, S. Gherardini, T. Gonzalez-Raya, R. André, and F. Mallet, “Propagating Quantum Microwaves: Towards Applications in Communication and Sensing, ”Quantum Sci. Technol.,vol. 8, no. 2, pp. 023001, 2023. doi: 10.1088/2058-9565/acc4af

[13]. Sanz, M., Fedorov, K.G., Deppe, F., & Solano, E. (2018). Challenges in open-air microwave quantum communication and sensing.IEEE Conf. Antenna Meas. Appl. (CAMA), 1–4.

[14]. Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., & Lloyd, S. (2018). Advances in quantum sensing.Nat. Photonics,12(11), 724–733.

[15]. Mohamed, A.-B.-A., Abdel-Aty, A.-H., & Eleuch, H. (2022). Quantum memory and coherence dynamics of two dipole-coupled qubits interacting with two cavity fields under decoherence effect.Results Phys., 41, 105924.

[16]. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements, ”Opt. Lett.,vol. 26, no. 21, pp. 1714–1716, Nov. 2001. doi: 10.1364/OL.26.001714. PMID: 18049709.

[17]. Gray, M., Shaddock, D., Harb, C., & Bachor, H.-A. (1998). Photodetector designs for low-noise, broadband, and high-power applications.Rev. Sci. Instrum.,69, 3755–3762.

[18]. Smithey, D.T., Beck, M., Raymer, M.G., & Faridani, A. (1993). Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography.

[19]. Braunstein, S.L., & van Loock, P. (2005). Quantum information with continuous variables.Rev. Mod. Phys.

[20]. Lvovsky, A.I., Dougherty, W.M., & Raymer, M.G. (2009). Review of quantum optical tomography.Rev. Mod. Phys.,81, 232.

[21]. Leonhardt, U. (1997). Measuring the Quantum State of Light, Cambridge University Press.

[22]. Lu, Q., Shen, Q., Cao, Y., Liao, S., & Peng, C. (2019). Ultra-Low-Noise Balanced Detectors for Optical Time-Domain Measurements.IEEE Trans. Nucl. Sci.,66(7), 1048–1055.

[23]. Fenghua Qi, Zhiyuan Wang, Weiwang Xu, Xue-Wen Chen, Zhi-Yuan Li (2020). Towards simultaneous observation of path and interference of a single photon in a modified Mach–Zehnder interferometer.Photon. Res.,8, 622–629.

[24]. Bandutunga, C. (2020). Digitally Enhanced Interferometry for Precision Metrology.

[25]. Cheng, J., Liang, S., Qin, J., Li, J., Zeng, B., Shi, Y., & Yan, Z. (2024). Quantum randomness introduced through squeezing operations and random number generation.Optics Express, 32(10), 18237.

[26]. Mao, W., Fu, Z., Li, Y., Li, F., & Yang, L. (2024). Exceptional–point–enhanced phase sensing.Sci. Adv.,10, eadl5037.

[27]. Rao, S., Sharma, P., & Kanseri, B. (2022). Investigation of quadrature squeezing in parametric downconversion with a partially coherent pump. J. Opt. Soc. Am. B, 39(8), 2280.

[28]. Fuyin Wang; Jiehui Xie; Zhengliang Hu; Shuidong Xiong; Hong Luo; Yongming Hu (2015). Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique.J. Lightwave Technol.,33(12), 2392–2397.

[29]. Jinrong Wangab, Shuange Wua, Liying Houa, Chengdong Mia, Xurong Shia, Xuzhen Gaoa(2024). A low-noise, high-SNR and large-dynamic-range balanced homodyne detector for broadband squeezed light measurement.Results Phys.,57, 107356.

[30]. Huy Q. Nguyen, Ivan Derkach, Adnan A. E. Hajomer, Hou-Man Chin, Akash nag Oruganti, Ulrik L. Andersen, Vladyslav Usenko & Tobias Gehring (2025). Quantum-enhanced photonic systems.Quantum Sci. Technol.,10(2), 025023.

[31]. Carmen Porto, Davide Rusca, Simone Cialdi, Andrea Crespi, Roberto Osellame, Dario Tamascelli, Stefano Olivares, and Matteo G. A. Paris (2018). Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup.J. Opt. Soc. Am. B,35, 1596–1602.

[32]. Takako Hirokawa; Sergio Pinna; Navid Hosseinzadeh; Aaron Maharry; Hector Andrade; Junqian Liu (2021). Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps Per Wavelength.J. Lightwave Technol.,39(2), 520–531.

[33]. Wei Luo, Lin Cao, Yuzhi Shi, Lingxiao Wan, Hui Zhang, Shuyi Li, Guanyu Chen, Yuan Li, Sijin Li, Yunxiang Wang, Shihai Sun, Muhammad Faeyz Karim, Hong Cai, Leong Chuan Kwek & Ai Qun Liu (2023). Recent progress in quantum photonic chips for quantum communication and internet.Light Sci. Appl.,12(1), 133.

[34]. Ferreira, M.J., Silva, N.A., Pinto, A.N., & Muga, N.J. (2021). Characterization of a quantum random number generator based on vacuum fluctuations.Appl. Sci.,11(16), 7413

[35]. Lawrie, B.J., Marino, A.M., Pooser, R.C., & Lett, P.D. (2019). Quantum sensing with squeezed light.ACS Photonics,6(6), 1307–1318.

Cite this article

Yang,J. (2025). Design and simulation of a 300 MHz Balanced Homodyne Detector for quantum photonics. Advances in Engineering Innovation,16(7),65-73.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Journal: Advances in Engineering Innovation

Volume number: Vol.16
Issue number: Issue 7
ISSN: 2977-3903(Print) / 2977-3911(Online)