References
[1]. Assouly, R., Dassonneville, R., Peronnin, T., Bienfait, A., & Huard, B. (2023). Quantum advantage in microwave quantum radar.Nat. Phys.,19(6), 2504.
[2]. Protte, M. (2023). Building Blocks for Integrated Homodyne Detection with Superconducting Nanowire Single-Photon Detectors. Doctoral dissertation,Universitätsbibliothek.
[3]. Braunstein, S., & Crouch, D. (1991). Fundamental limits to observations of squeezing via balanced homodyne detection.Phys.Rev. A.43. 330-337. 10.1103/PhysRevA.43.330.
[4]. Hua, Z., Qing, L., & Huilong, J. (2017). Phase stabilization method based on optical fiber link.J. Commun.,12(6), 327–332.
[5]. Ghalaii, M., & Pirandola, S. (2022). Quantum communications in a moderate-to-strong turbulent space.Commun.Phys.,5, 38.
[6]. Fritschel, P., Evans, M., & Frolov, V. (2014). Balanced homodyne readout for quantum limited gravitational wave detectors.Opt. Express,22, 4224–4234.
[7]. Oh, J., Cho, J., & Rhee, J.-K.K. (2023). Continuous-variable quantum key distribution with time-division dual-quadrature homodyne detection.Opt. Express,31, pp. 30669–30681.
[8]. Zhuang, Q.T., Bienfait, A., & Huard, B. (2023). Quantum advantage on the radar.Nat. Phys.,19(7), 568.
[9]. Waller, E.H., Keil, A., & Friederich, F. (2023). Quantum range-migration-algorithm for synthetic aperture radar applications.Sci. Rep.,13(7), 11436–11443.
[10]. Reichert, M., Di Candia, R., Win, M.Z., & Sanz, M. (2022). Quantum-enhanced doppler radar/lidar.NPJ Quantum Inf.,8(12), 147.
[11]. Chang, C.W.S., Vadiraj, A. M., Bourassa, J., Balaji, B., & Wilson, C.M. (2018). Quantum-enhanced noise radar.Appl. Phys. Lett.,114(12), 112601.
[12]. M. Casariego, E. Z. Cruzeiro, S. Gherardini, T. Gonzalez-Raya, R. André, and F. Mallet, “Propagating Quantum Microwaves: Towards Applications in Communication and Sensing, ”Quantum Sci. Technol.,vol. 8, no. 2, pp. 023001, 2023. doi: 10.1088/2058-9565/acc4af
[13]. Sanz, M., Fedorov, K.G., Deppe, F., & Solano, E. (2018). Challenges in open-air microwave quantum communication and sensing.IEEE Conf. Antenna Meas. Appl. (CAMA), 1–4.
[14]. Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., & Lloyd, S. (2018). Advances in quantum sensing.Nat. Photonics,12(11), 724–733.
[15]. Mohamed, A.-B.-A., Abdel-Aty, A.-H., & Eleuch, H. (2022). Quantum memory and coherence dynamics of two dipole-coupled qubits interacting with two cavity fields under decoherence effect.Results Phys., 41, 105924.
[16]. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements, ”Opt. Lett.,vol. 26, no. 21, pp. 1714–1716, Nov. 2001. doi: 10.1364/OL.26.001714. PMID: 18049709.
[17]. Gray, M., Shaddock, D., Harb, C., & Bachor, H.-A. (1998). Photodetector designs for low-noise, broadband, and high-power applications.Rev. Sci. Instrum.,69, 3755–3762.
[18]. Smithey, D.T., Beck, M., Raymer, M.G., & Faridani, A. (1993). Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography.
[19]. Braunstein, S.L., & van Loock, P. (2005). Quantum information with continuous variables.Rev. Mod. Phys.
[20]. Lvovsky, A.I., Dougherty, W.M., & Raymer, M.G. (2009). Review of quantum optical tomography.Rev. Mod. Phys.,81, 232.
[21]. Leonhardt, U. (1997). Measuring the Quantum State of Light, Cambridge University Press.
[22]. Lu, Q., Shen, Q., Cao, Y., Liao, S., & Peng, C. (2019). Ultra-Low-Noise Balanced Detectors for Optical Time-Domain Measurements.IEEE Trans. Nucl. Sci.,66(7), 1048–1055.
[23]. Fenghua Qi, Zhiyuan Wang, Weiwang Xu, Xue-Wen Chen, Zhi-Yuan Li (2020). Towards simultaneous observation of path and interference of a single photon in a modified Mach–Zehnder interferometer.Photon. Res.,8, 622–629.
[24]. Bandutunga, C. (2020). Digitally Enhanced Interferometry for Precision Metrology.
[25]. Cheng, J., Liang, S., Qin, J., Li, J., Zeng, B., Shi, Y., & Yan, Z. (2024). Quantum randomness introduced through squeezing operations and random number generation.Optics Express, 32(10), 18237.
[26]. Mao, W., Fu, Z., Li, Y., Li, F., & Yang, L. (2024). Exceptional–point–enhanced phase sensing.Sci. Adv.,10, eadl5037.
[27]. Rao, S., Sharma, P., & Kanseri, B. (2022). Investigation of quadrature squeezing in parametric downconversion with a partially coherent pump. J. Opt. Soc. Am. B, 39(8), 2280.
[28]. Fuyin Wang; Jiehui Xie; Zhengliang Hu; Shuidong Xiong; Hong Luo; Yongming Hu (2015). Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique.J. Lightwave Technol.,33(12), 2392–2397.
[29]. Jinrong Wangab, Shuange Wua, Liying Houa, Chengdong Mia, Xurong Shia, Xuzhen Gaoa(2024). A low-noise, high-SNR and large-dynamic-range balanced homodyne detector for broadband squeezed light measurement.Results Phys.,57, 107356.
[30]. Huy Q. Nguyen, Ivan Derkach, Adnan A. E. Hajomer, Hou-Man Chin, Akash nag Oruganti, Ulrik L. Andersen, Vladyslav Usenko & Tobias Gehring (2025). Quantum-enhanced photonic systems.Quantum Sci. Technol.,10(2), 025023.
[31]. Carmen Porto, Davide Rusca, Simone Cialdi, Andrea Crespi, Roberto Osellame, Dario Tamascelli, Stefano Olivares, and Matteo G. A. Paris (2018). Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup.J. Opt. Soc. Am. B,35, 1596–1602.
[32]. Takako Hirokawa; Sergio Pinna; Navid Hosseinzadeh; Aaron Maharry; Hector Andrade; Junqian Liu (2021). Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps Per Wavelength.J. Lightwave Technol.,39(2), 520–531.
[33]. Wei Luo, Lin Cao, Yuzhi Shi, Lingxiao Wan, Hui Zhang, Shuyi Li, Guanyu Chen, Yuan Li, Sijin Li, Yunxiang Wang, Shihai Sun, Muhammad Faeyz Karim, Hong Cai, Leong Chuan Kwek & Ai Qun Liu (2023). Recent progress in quantum photonic chips for quantum communication and internet.Light Sci. Appl.,12(1), 133.
[34]. Ferreira, M.J., Silva, N.A., Pinto, A.N., & Muga, N.J. (2021). Characterization of a quantum random number generator based on vacuum fluctuations.Appl. Sci.,11(16), 7413
[35]. Lawrie, B.J., Marino, A.M., Pooser, R.C., & Lett, P.D. (2019). Quantum sensing with squeezed light.ACS Photonics,6(6), 1307–1318.