References
[1]. Zhang, M. X., Xu, L. C., Yang, X., Wu, Z. J., & Zhang, Q. Q. (2023). A study on charging station planning based on the spatiotemporal distribution characteristics of electric vehicle charging demand.Power System Technology, 47(1), 256–268.
[2]. Zhou, C. Q., Xiang, Y., Tong, H., Rao, P., Qing, Y. F., & Liu, Y. B. (2022). Estimation of electric vehicle charging demand and V2G controllable capacity driven by trajectory data.Automation of Electric Power Systems, 46(12), 46–55.
[3]. Wang, H. X., Yuan, J. H., Chen, Z., Ma, Y. M., Dong, H. N., Yuan, S., & Yang, J. Y. (2022). A review and prospect of key technologies for integrated vehicle–station–grid operation in smart cities.Transactions of China Electrotechnical Society, 37(1), 112–132.
[4]. Yuan, X. X., Pan, M. Y., Duan, D. P., Li, X. L., & Chen, H. Y. (2021). Electric vehicle charging load forecasting method based on grid division.Journal of Electric Power Science and Technology, 36(3), 19–26.
[5]. Wang, R., Gao, X., Li, J. L., Xu, J. H., Ai, G. Q., & Jing, X. (2020). Electric vehicle charging load forecasting method based on cluster analysis.Power System Protection and Control, 48(16), 37–44.