References
[1]. Chen, X. , Zhou, L. , Zhang, C. , Wang, S. , Zhang, L. , & Chen, J. (2022). Research status and development trend of cooling technology for green and energy-efficient data centers. Engineering Sciences, 24(4), 94–104. https: //doi. org/10. 1016/j. engsci. 2022. 04. 009 (if available; otherwise, omit)
[2]. Sun, Q. , Sun, Z. , Pan, H. , Chen, J. , Zhu, C. , Chen, C. , & Zhou, J. (2022). Optimal configuration of integrated energy systems for data centers considering multiple energy storage methods. Electric Power, 55(9), 1–7.
[3]. Jiang, S. , Zhang, B. , & Teng, X. (2025). Research progress on the application of liquid cooling technology in data centers. Advances in New Energy, 13(2), 204–213.
[4]. Bao, Y. , Chen, J. , & Shao, S. (2023). Research status of high-efficiency liquid cooling technology for data centers. Refrigeration and Air Conditioning, 23(10), 58–69.
[5]. Gupta, R. , Asgari, S. , & Moazamigoodarzi, H. (2020). Cooling architecture selection for air-cooled data centers by minimizing exergy destruction. Energy, 201, 117625. https: //doi. org/10. 1016/j. energy. 2020. 117625
[6]. Ji, A. , Zhong, J. , & Shuai, L. (2013). Heat dissipation methods for electronic devices with high heat flux density. Electronic Mechanical Engineering, 29(6), 30–35.
[7]. Xiao, X. (2022). Research progress on the application of liquid cooling technology in data centers. Heating, Ventilation & Air Conditioning, 52(1), 52–65.
[8]. Haywood, A. M. , Sherbeck, J. , & Phelan, P. (2015). The relationship among CPU utilization, temperature, and thermal power for waste heat utilization. Energy Conversion and Management, 95, 297–303. https: //doi. org/10. 1016/j. enconman. 2015. 02. 059