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Abstract. This paper proposes a closed-loop human-machine co-creation process suitable for the early stages of industrial design. 

By integrating the Stable Diffusion model with the Low-Rank Adaptation (LoRA) fine-tuning strategy, and constructing an image 

quality evaluation mechanism based on the dual metrics of Contrastive Language-Image Pretraining (CLIP) and CLIP Maximum 

Mean Discrepancy (CMMD), the system guides designers in filtering and providing feedback on generated outputs to iteratively 

optimize prompts. The system integrates automatic scoring, manual filtering, and keyword clustering recommendation to form a 

collaborative closed loop of “generation-selection-optimization.” In a desk lamp design task, experiments demonstrate that this 

process significantly enhances the consistency of image styles and the quality of creative expression. The study verifies the 

feasibility of the human-machine collaboration mechanism in complex design tasks and offers a new paradigm for the application 

of generative AI in industrial product design. 
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1. Introduction 

Contemporary industrial design is undergoing a transformative shift with the deep integration of generative Artificial Intelligence 

(AI). Generative technologies such as diffusion models can rapidly produce large volumes of high-quality design images, offering 

designers a rich pool of creative resources [1]. However, selecting design options from this bulk output that align with intended 

design objectives and stylistic requirements remains a challenge: automated algorithms struggle to fully grasp designers’ aesthetic 

preferences and creative intentions [2], while manual selection from a vast array of options can lead to cognitive overload and 

decision fatigue [3]. 

To address these issues, human-AI co-creation has emerged in recent years as a prominent research focus in academia. Song 

et al. proposed a unified and comprehensive classification scheme for AI roles and developed an AI design framework [4]. This 

framework details AI’s expected capabilities (such as analysis and synthesis), interaction attributes (such as real-time feedback), 

and trust-enhancing factors (such as explainability) across different collaborative scenarios. Their study emphasizes that designing 

AI systems to enhance human team collaboration is crucial—especially in the context of engineering design and innovation. Wang 

et al. pointed out that traditional Human-AI Interaction (HAI) differs fundamentally from Human-AI Collaboration (HAIC) [5]. 

True collaboration requires shared understanding of goals, co-management of tasks, and synchronized progress tracking, rather 

than AI merely serving as a tool. They advocate incorporating the perspective of Computer-Supported Cooperative Work (CSCW) 

into the design of AI algorithms, with the aim of building trustworthy collaboration models between humans and AI in future 

applications. Jiang et al. conducted a systematic review of the Human-AI Interaction and Integration (HAII) field, identifying 

collaboration as one of the core research themes [6]. They recommend that future research expand to include diverse user groups, 

AI roles, and tasks, while integrating interdisciplinary theories—from communication studies, psychology, and sociology—to 

support sustained development in the field. Puranam regarded collaborative decision-making between humans and AI as a matter 

of organizational design and proposed a typology of human-AI task division and learning configurations [7]. 

Although these studies have laid a theoretical foundation for human-machine collaboration, there remains a lack of actionable, 

iterative mechanisms aimed at optimizing design quality in the practical implementation of generative design. This is particularly 

evident during the early stage of appearance ideation, where a gap often exists between the image quality, style coherence, and 

design logic of AI-generated outputs, limiting their applicability in real-world industrial design workflows. 
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In response, this study proposes a closed-loop human-machine collaborative creative generation process. Based on the Stable 

Diffusion model, the system employs LoRA fine-tuning to enhance style controllability and constructs an automatic scoring 

mechanism that integrates CLIP and CMMD metrics, enabling dual-dimensional evaluation of semantic alignment and stylistic 

coherence in the generated images. Building on this foundation, the system introduces a designer-in-the-loop filtering and feedback 

mechanism, enabling efficient iteration and targeted evolution of creative outputs through multi-round prompt optimization and 

semantic clustering recommendations. Using a household desk lamp appearance design task as a case study, this paper 

demonstrates the practical effectiveness of the proposed workflow and explores its potential in advancing human-AI co-creation 

mechanisms and promoting intelligent transformation in industrial design. 

2. Automated scoring system based on CLIP and CMMD 

Batch image generation using diffusion models forms the foundation for obtaining diverse design concepts. However, a subsequent 

challenge arises: how to objectively evaluate the quality of the generated outputs. To address this, we propose a dual-metric 

automated scoring system that integrates CLIP and CMMD, enabling semantic and stylistic evaluation of large-scale generated 

images. The two scores are normalized and weighted to produce a composite score that serves as the basis for subsequent filtering. 

CLIP Score (Semantic Similarity): We adopt the Contrastive Language-Image Pretraining (CLIP) model developed by OpenAI 

to compute the semantic similarity between each generated image and its corresponding text prompt [8]. Specifically, the image 

and the prompt are each projected into a shared embedding space, and their cosine similarity is calculated as the score: 

𝑆𝐶𝐿𝐼𝑃 = 𝑐𝑜𝑠(Image_Embedding, Text_Embedding)                             (1) 

A higher score indicates that the image more faithfully reflects the prompt in terms of material, form, and style. Prior research 

suggests that CLIP scores are highly correlated with human judgments and can effectively assess text-image alignment. 

CMMD Score (Distribution Consistency / Style Credibility): To assess whether a generated image’s style aligns with that of 

real-world product distributions, we incorporate the recently proposed CLIP-based Maximum Mean Discrepancy (CLIP-MMD) 

metric [9], hereafter referred to as CMMD. This metric first extracts feature embeddings of both generated and real product images 

using CLIP, then calculates the Maximum Mean Discrepancy (MMD) between the two distributions in the embedding space: 

𝑀𝑀𝐷2(𝑃, 𝑄) = 𝔼
𝑥,𝑥′∼𝑃

[𝑘 (𝑥, 𝑥′)] + 𝔼
𝑦,𝑦′∼𝑄

[𝑘 (𝑦, 𝑦′)] − 2𝔼𝑥∼𝑃,𝑦∼𝑄[𝑘(𝑥, 𝑦)]                (2) 

Smaller differences indicate that the overall style of the generated images is closer to that of real-world products, and therefore 

more credible. For intuitive interpretation, the MMD distance is inversely normalized into a CMMD score ranging from 0 to 1, 

where a higher score suggests a more natural and authentic design style. Compared to traditional evaluation metrics (e.g., Fréchet 

Inception Distance, FID), CMMD leverages richer semantic information from CLIP and avoids the biases introduced by Gaussian 

distribution assumptions, offering more reliable assessment of generated image quality. 

Composite Score: Since design tasks often require balancing semantic fidelity and stylistic realism, we introduce a weighted 

composite scoring function that fuses the CLIP and CMMD scores with a tunable parameter 𝛼. 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝛼 ⋅ 𝑆𝐶𝐿𝐼𝑃

′
+ (1 − 𝛼) ⋅ 𝑆𝐶𝑀𝑀𝐷

′
                                   (3) 

By default, 𝛼=0.5 (equal weighting), which suits most scenarios. If semantic alignment with the prompt is prioritized, α can 

be increased; if stylistic realism is emphasized, it can be decreased. The composite score enables preliminary sorting and selection 

of generated images, with higher-scoring images prioritized for designer review. 

In practice, we collected 60 SKUs of desk lamps with strong recent sales from the official websites of major domestic lighting 

brands (Philips, Opple, Yeelight, Panasonic), as well as third-party shopping platforms. After removing duplicates, blurry images, 

and distorted angles, and cleaning complex backgrounds using Photoshop, we curated an initial dataset of 40 samples, as shown 

in Figure 1. 
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Figure 1. Selected experimental samples (image source: author-illustrated) 

Using the fine-tuned diffusion model, we generated 128 conceptual images of desk lamps in a single batch and calculated the 

CLIP and CMMD scores for each. The resulting composite scores and evaluation labels are presented in Table 1. The automated 

scoring results provided a streamlined and organized candidate set for manual selection, allowing designers to focus their efforts 

on high-potential concepts. 

Table 1. Composite scoring results of selected generated images (table source: author-illustrated) 

Image 

ID 
Image 

Original 

CLIP Score 

Normalized 

CLIP Score 

CMMD 

Distance 

Normalized 

CMMD Score 

Composite 

Score 

System 

Evaluation Notes 

006 

 

0.92 0.92 0.18 0.82 0.87 

High text-image 

alignment; 

realistic 

appearance with 

consistent style 

017 

 

0.91 0.91 0.41 0.59 0.75 

Semantically 

precise, but 

proportions are 

slightly distorted 

037 

 

0.85 0.85 0.24 0.76 0.81 

Reasonable form; 

details meet 

design 

requirements 

048 

 

0.58 0.58 0.16 0.84 0.71 

Style is realistic, 

but lamp arm 

representation is 

insufficient 

060 

 

0.39 0.39 0.34 0.66 0.53 

Vague 

expression; lacks 

realism in form 
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069 

 

0.78 0.78 0.55 0.45 0.62 

Moderate 

alignment; 

stylistic 

inconsistency 

086 

 

0.67 0.67 0.19 0.81 0.74 

Overall 

reasonable; some 

details require 

adjustment 

104 

 

0.52 0.52 0.22 0.78 0.65 

Stylistically 

coherent; some 

elements not 

clearly expressed 

3. Manual screening and multi-round optimization feedback mechanism 

Although automated scoring efficiently filters out inferior options on a rational level, aesthetic judgments in creative design still 

require human oversight. Many key design attributes—such as creativity, novelty, aesthetic value, and brand alignment—are 

difficult for current algorithms to quantify or accurately capture. Therefore, after the automated scoring stage, this study introduces 

a manual screening phase in which professional designers perform a secondary evaluation of high-scoring candidate images to 

ensure the final proposals meet both functional logic and aesthetic standards. This human-AI collaborative mechanism iteratively 

refines the design outcomes through multiple rounds of feedback, balancing AI’s efficiency with human creative judgment. 

3.1. Process and role of manual screening 

In each iteration, the system first ranks the generated images based on their composite scores and selects a batch of high-alignment 

candidate proposals. Designers then evaluate each candidate individually, judging from the perspectives of functional feasibility, 

structural soundness, stylistic coherence, and creative uniqueness. For proposals that meet the requirements, designers mark them 

as “Confirmed for Adoption”; those with potential but in need of improvement are labeled “Conditionally Adopted” with remarks; 

unsatisfactory ones are eliminated. After each screening round, the system records designers’ selection preferences and comments. 

These data are then used to analyze design inclinations and guide the next generation cycle, as shown in Table 2. It is worth noting 

that manual screening is not merely a revalidation of the automated scores—it also identifies creative elements missed by the 

algorithm and corrects potentially overestimated suboptimal results. By integrating human and machine evaluations, the screening 

outcomes more reliably reflect the design objectives. 

Table 2. Designers’ decision records for selected generated images (table source: author-illustrated) 

Rank Image ID Image Composite Score Designer’s Decision Designer’s Remark 

1 006 

 

0.87 
Confirmed for 

Adoption 

High alignment and strong 

feasibility for implementation 

2 037 

 

0.81 
Conditionally 

Adopted 

Proportions between lamp 

arm and pivot require further 

refinement 

Table 1. Continued 
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3 017 

 

0.75 
Conditionally 

Adopted 

Distortion in proportion 

details is obvious; style may 

be retained 

4 086 

 

0.74 Rejected, Archived 

Elements meet design 

requirements but contain 

structural errors 

3.2. Multi-round iteration and feedback loop 

This section establishes a cyclical process of “generation-selection-optimization,” enabling progressive enhancement through 

human-AI collaboration. Specifically, after each round of manual screening, the system analyzes the high-value images selected 

by designers and summarizes their common features and semantic preferences. On the one hand, these shared attributes are used 

to adjust the parameters or prompts for the next round of image generation, guiding the AI to explore in directions aligned with 

designer preferences. On the other hand, designers can also refer to the experience from the previous round to adjust their design 

strategies. For example, if the previous set of generated designs lacked a certain stylistic element, the designer may include relevant 

descriptions in the new prompt. Through this bidirectional feedback, designers and the AI model adapt to each other in every 

iteration: the AI gradually becomes attuned to the designer’s preferences, while the designer can more efficiently expand the 

boundaries of creativity with AI support. After multiple rounds of iteration, the system ultimately converges on a set of outstanding 

design solutions that are both creative and feasible, completing the design process from divergence to convergence. 

It is worth emphasizing that this multi-round optimization loop is not limited to desk lamp design tasks. In complex product 

design, the designer’s aesthetic judgment always plays a crucial role. Automated scoring provides objective benchmarks, while 

manual selection ensures the final decisions align with human aesthetic standards. The two complement each other, making the 

human–machine collaboration process both efficient and reliable. 

4. Scoring clustering and prompt optimization mechanism 

To further leverage the value of scoring data, this study introduces semantic clustering analysis to extract prompt optimization 

suggestions from designer preferences. This mechanism can recommend keywords for the next round of generation based on the 

commonalities of high-scoring designs, thus forming an intelligent prompting function that facilitates human-AI collaboration. 

4.1. Clustering analysis of high-scoring samples 

After each generation and screening round, this study clusters the set of high-scoring images either selected or retained by the 

designer, based on their scoring vectors and semantic labels. The “scoring vector” here refers to the combination of each image’s 

CLIP score and CMMD score, which can be further expanded to include other semantic features of the image. The goal of 

clustering is to identify underlying categories in designer preferences: for instance, one cluster may represent a preference for 

“structurally innovative and functionally sound” designs, while another reflects “stylistically unique yet brand-consistent” designs. 

Taking the minimalist desk lamp design experiment as an example, the study uses the GPT-4o model to label each image with 

20 English keywords capturing semantic information, covering dimensions such as color, material, finish, and geometry. The 

labels are manually reviewed and corrected by a design focus group to serve as structured semantic representations of the images. 

Based on the semantic tags, a term-frequency matrix is built using the TF-IDF vectorization method. Principal Component 

Analysis (PCA) is then used to reduce the vector dimensions to three for visual analysis and clustering. Finally, K-Means clustering 

is applied to the samples, with the number of clusters 𝑘 ∈[2,5]. The silhouette score is used to evaluate clustering performance, 

and 𝑘=5 is selected as the optimal partition. Each cluster corresponds to a group of semantically similar design schemes. The 

central features of these clusters can be described using a set of keywords, as shown in Table 3. This clustering analysis structures 

dispersed design preferences and lays the foundation for automated prompt generation. 

Table 2. Continued 
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Table 3. Keyword clustering results (table source: author-illustrated) 

Cluster Keywords Frequency Number of Images 

Cluster 1 
plastic material, white color, modern style, neutral tone, 

matte finish 
18, 15, 12, 11, 9 25 

Cluster 2 
functional design, adjustable arm, minimalist aesthetic, 

simple geometry, ergonomic design 
21, 16, 15, 15, 14 30 

Cluster 3 
task lighting, pivot joint, modern style, soft edges, sleek 

body 
19, 17, 13, 11, 9 29 

Cluster 4 
LED light source, neutral tone, lightweight, pivot joint, 

clean silhouette 
19, 10, 8, 8, 7 20 

Cluster 5 
minimalist aesthetic, simple geometry, retro elements, 

plastic material, modular parts 
15, 14, 11, 9, 8 19 

4.2. Prompt recommendation and generation 

Based on the clustering results, a method is designed to generate prompt optimization suggestions. First, the focus is placed on the 

image cluster(s) with high designer acceptance, and high-frequency keywords are extracted from their semantic labels. In this 

implementation, each image is pre-labeled with a set of keywords generated by the GPT model, describing its features across 

dimensions such as material, structure, and style. For images in the selected clusters, this study calculates the TF-IDF weight of 

each keyword and selects the top five as the core semantics representing the cluster. Next, methods such as variance thresholding 

are applied to filter out keywords that contribute little or have low distinctiveness within the cluster, ensuring that the retained 

keywords effectively highlight the characteristics of the cluster. These remaining keywords are then categorized into three groups 

according to design semantics: material, structure, and stylistic descriptors. Using the example keywords above, the filtering results 

are shown in Table 4. 

Table 4. Keyword filtering results (table source: author-illustrated) 

Material Structure Stylistic Descriptors 

None adjustable arm functional design, minimalist aesthetic, simple geometry, ergonomic design, LED 

light source 

4.3. Collaborative recommendation and human decision-making 

The system presents the generated prompt words in the form of a recommendation list to the designer. In the interactive interface, 

each recommended word is labeled with its source (e.g., “High-frequency keyword from high-rated images”) and its corresponding 

preference cluster category (e.g., “Structural Preference”). A thumbnail of a related high-rated image is also displayed as reference. 

Designers are free to select which recommendation words to adopt: they can include them in a new prompt with a single click, or 

they may edit the words by adding, removing, or modifying them. It is important to note that the suggested prompts are auxiliary 

rather than mandatory—they serve to inspire and provide direction, but the ultimate creative control remains with the designer. 

Through this interpretable and controllable recommendation approach, designers can experiment with different prompt 

adjustments at lower cost, thereby improving the efficiency of the generation-iteration process. 

4.4. Dynamic optimization and co-evolution 

The prompt recommendation mechanism also includes a feedback-driven adaptive module. As multiple iterations progress, the 

system monitors the effectiveness of the recommended words: if, in a certain round, images generated with a specific recommended 

word frequently receive high scores and are selected by the designer, the system will increase the weight of that word in subsequent 

iterations or continue to recommend related vocabulary. Conversely, if a recommended word repeatedly leads to rejected outputs, 

the system will reduce its weight or remove it from the candidate list. Designers’ evaluations of the generated results are also used 

to refine the recommendation algorithm through regression optimization, gradually aligning the system’s suggestions with the 
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designer’s long-term preferences. This “human choice → system adaptation” mechanism ensures that the recommended prompts 

co-evolve with the designer’s taste, allowing the AI assistant to increasingly “understand” the user while keeping creative 

leadership in the designer’s hands. 

In summary, the scoring-based clustering and prompt optimization module establishes an intelligent semantic bridge within 

the human-AI collaboration system: it mines design preferences from data and feeds them back into prompt generation, thus 

enabling a transformation from passive output to active assistance in the creative process. 

5. Closed-loop human-AI co-creation mechanism and experimental validation 

By integrating the modules described above, this study constructs a complete closed-loop design workflow for human-AI co-

creation. Starting from the designer’s initial prompt and the model-generated outputs, the process goes through automatic scoring 

and filtering, manual refinement and feedback, prompt optimization, and then enters the next round of creation—repeating 

iteratively until a satisfactory design is achieved. This workflow tightly couples the speed of AI with human intelligence, 

significantly improving both the efficiency and quality of creative generation. To validate the effectiveness of this closed-loop 

mechanism, a comparative experiment was conducted, evaluating design outcomes with and without the involvement of 

recommended prompts. 

Using a desk lamp appearance design task as the test scenario, the same base model and parameters were applied (a LoRA-

fine-tuned Stable Diffusion model with identical random seeds, etc.). Control Group A used only the designer’s original prompt 

to generate images; Experimental Group B appended system-recommended keywords to the end of the prompt in each round, as 

shown in Table 5. Each group generated 50 images, which were evaluated across multiple dimensions. Evaluation metrics included: 

(1) text-image consistency (CLIP score); (2) structural and stylistic consistency (CMMD score); and (3) subjective design quality 

scores (blind ratings by five designers, scoring 1-5 based on visual quality, stylistic fit, and design value). To ensure reliability, 

independent samples t-tests were conducted to assess the significance of differences. 

Table 5. Recommended prompts for both groups (table source: author-illustrated) 

Group Prompt 

Group A (No 

Recommendation) 

A modern minimalist desk lamp with white matte plastic finish, circular base and lampshade, 

adjustable arm. 

Group B (With 

Recommendation) 

A modern minimalist desk lamp with white matte plastic finish, circular base and lampshade, 

adjustable arm, functional design, simple geometry, ergonomic structure, LED light source, 

minimalist aesthetic. 

 

Results and Analysis: As shown in Table 6, the prompts incorporating system-recommended keywords (Experimental Group 

B) significantly outperformed those of Control Group A across all evaluation dimensions. Specifically, the average CLIP score of 

Group B improved by approximately 14.6%, the average CMMD score increased by around 22.4%, and the average subjective 

rating from designers rose by about 19.6%. All differences passed significance testing (𝑝< 0.05). These findings demonstrate that 

the scoring-driven prompt optimization mechanism effectively enhances semantic alignment and stylistic naturalness in generated 

images, providing more valuable references for designers. Several designers involved in the blind review commented: “Prompts 

with recommended keywords produced outputs with greater visual integrity and stylistic coherence; the system’s suggested 

keywords clarified the design direction and reduced trial-and-error.” Such feedback underscores the positive role of human-AI 

collaboration in minimizing repeated creative missteps—AI offers rational suggestions based on data, while designers adjust their 

thinking accordingly. Their synergy ensures that each iteration evolves toward better outcomes. 

Table 6. Experimental comparison between two groups (table source: author-illustrated) 

Evaluation Metric 
Group A (No 

Recommendation) 

Group B (With 

Recommendation) 
Improvement 

Significance (p-

value) 

Average CLIP Score 0.534 0.612 14.6% 0.021 

Average CMMD Score 0.478 0.585 22.4% 0.008 

Average Human Score 3.36 4.02 19.6% 0.014 

 

Through the above experiment, this study verifies the performance gains of the proposed closed-loop workflow in real design 

tasks. Designers, aided by multi-dimensional evaluations and intelligent prompts from the system, can explore creative spaces 

more efficiently; meanwhile, AI, guided by human feedback, produces outputs that better align with design intentions. In essence, 

this human-AI co-creation mechanism achieves simultaneous improvement in design efficiency and quality, marking a shift in 

generative design workflows from “one-time output” to “continuous optimization.” This outcome introduces a new paradigm for 
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integrating AI into industrial design practice—where AI is no longer merely a passive tool, but gradually becomes a “creative 

assistant” that understands design. 

6. Discussion on generalizability and scalability 

This study uses a desk lamp as an example to illustrate a closed-loop human-AI collaborative creative generation process, yet the 

underlying design philosophy is broadly generalizable. First, the mechanism of scoring, filtering, and feedback is not limited to a 

specific product category. By adjusting evaluation metrics and reference data according to the task, the process can be transferred 

to other fields of industrial design. For instance, in furniture design, reference images of various furniture styles can be collected 

and used with CLIP+CMMD to evaluate generated chair or table designs. In automotive styling, similar semantic scoring and 

manual filtering can be applied to guide AI in progressively aligning with designers’ concepts. The core lies in establishing a 

domain-specific generative design loop system through a customized evaluation framework (e.g., using CLIP to assess semantics, 

CMMD for style, or integrating other domain-specific metrics) and human-AI collaborative decision-making. 

Secondly, the process is highly scalable. In its current implementation, the study focuses primarily on image-level generation 

and feedback, but it can be expanded to incorporate more modalities and stages. For example, a user interaction module could be 

added to involve end-users in evaluating conceptual designs, thereby integrating market preferences into the iteration process. 

CAD modeling and rapid prototyping phases could also be introduced, transforming 2D image concepts into 3D models for 

engineer review, thus forming a design-engineering integrated collaboration loop. Furthermore, the scoring mechanism could be 

extended to cover additional dimensions, such as automated evaluation of novelty, aesthetics, or green design indicators, to meet 

the unique needs of various projects. Since the entire system is modular—comprising clearly interfaced modules for generation, 

scoring, filtering, and recommendation—replacing or adding modules is relatively straightforward. This openness makes 

systematic implementation feasible: design teams can tailor and assemble the workflow according to their specific needs, 

progressively building an intelligent in-house design platform. 

7. Conclusion and outlook 

Focusing on the task of desk lamp appearance design, this paper proposes a closed-loop human-AI collaborative generation process, 

incorporating modules such as automated semantic scoring, manual filtering and feedback, preference clustering analysis, and 

prompt optimization suggestions. The process effectively integrates AI’s objective evaluation with designers’ subjective creativity, 

forming a cycle from image generation to evaluation and filtering, and finally to prompt optimization—thereby enhancing the 

efficiency and quality of generative design. Experimental results validate the significant improvement brought by the system’s 

recommendation mechanism, further demonstrating the feasibility and value of the human-AI co-creation paradigm in design 

practice. 

Future research and application efforts may be strengthened in the following aspects: (1) Data-wise, the process can be applied 

to a broader range of product categories and larger sample sizes across other industrial design domains to validate its 

generalizability. Accumulating more designer interaction data can also support the optimization of recommendation algorithms. 

(2) Experiment-wise, larger-scale user studies involving designers from diverse backgrounds can be conducted to assess the 

system’s impact on the creative process—such as whether it reduces design time or enhances novelty. Feedback collected will 

help improve the human-AI interaction interface and collaboration strategy. (3) Technology-wise, integrating new generative 

models and evaluation metrics could be explored—for example, adopting large-scale multimodal models to enhance text 

comprehension and generation quality, or using human visual perception models to assess image aesthetics—in order to build a 

more comprehensive evaluation and feedback system. 

In summary, the human-AI collaborative generation process represents a significant direction for the integration of industrial 

design and artificial intelligence. It enables AI to evolve from a design tool into a creative partner, simultaneously freeing 

productivity and sparking greater innovation. As technology and practice continue to advance, this collaborative paradigm is poised 

to flourish across broader design domains, driving the future of design processes toward intelligence, efficiency, and human-

centeredness. 
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