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Abstract. Automatic modulation recognition plays a critical role in both civilian and military communication systems. While 

traditional approaches rely on manual feature extraction with limited accuracy, deep learning methods offer promising 

alternatives for this pattern recognition task. This paper presents a systematic performance evaluation of classical deep learning 

models for automatic modulation classification, aiming to establish baseline references for future research. Through comparative 

experiments using the RadioML2018.01a dataset containing 24 modulation types across Signal-to-Noise Ratio (SNR) levels 

from -20dB to 20dB, we demonstrate that modulation signals exhibit multidimensional characteristics with temporal 

dependencies. Our analysis reveals that the proposed Multi-Scale Contextual Attention Network (MCNet) outperforms 

conventional Convolutional Neural Network (CNN) and Residual Network (ResNet) architectures, achieving 82.39% accuracy 

at high SNR conditions. The network's superior performance stems from its ability to extract multiscale spatiotemporal features 

through parallel asymmetric convolutions, preserve signal correlations via attention mechanisms, and maintain computational 

efficiency through optimized layer configurations. These findings provide two key contributions: quantitative benchmarks for 

model selection in practical implementations, and architectural insights for developing next-generation recognition systems. The 

study particularly highlights MCNet's robustness in processing high-order Quadrature Amplitude Modulation/Phase Shift 

Keying (QAM/PSK) modulations, though challenges remain for low-SNR scenarios. 
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1. Introduction 

Automatic Modulation Recognition (AMR), as a critical technology in wireless communication, refers to the use of computer 

algorithms to automatically analyze and determine the modulation type of received signals. During communications, signals must 

be actively modulated to generate Radio Frequency (RF) signals, which possess higher power to facilitate effective wireless 

transmission. However, due to the wide variety of modulation formats, the receiver must first use the corresponding demodulation 

method to extract the transmitted data content. If the modulation format is not known in advance, it becomes necessary to analyze 

the characteristics of the received RF signal—such as statistical features (e.g., kurtosis, skewness)—to infer its modulation scheme. 

Given that manual identification is highly inefficient and challenging, computer algorithms are essential for performing this 

recognition task. 

Deep Learning is one of the important branches in machine learning. It uses the framework of neural network to automatically 

analyze and train from features of the data. With the trained model, it can solve problems like classification or prediction. 

Beyond traditional approaches in Automatic Modulation Recognition (AMR), which rely on using algorithmic analysis and 

feature extraction from data to identify modulation formats in RF signals, deep learning models can also be effectively applied to 

AMR tasks [1]. Trained deep learning models enable automated data analysis and generalization, ensuring computational 

efficiency while leveraging the inherent capabilities of neural networks to achieve superior recognition accuracy, thereby 

streamlining the identification process. The application of deep learning in AMR holds significant potential for domains in both 

military and civilian. It can reduce the complexity of signal interception, analysis, and reception, while research in this field 

contributes to enhancing communication security. Furthermore, the performance of recognition models can serve as an evaluative 

metric for assessing the data security level in communication systems. 

This study benchmarks classical convolutional neural networks for automatic modulation recognition, evaluating their 

accuracy and computational efficiency under controlled SNR conditions. Through systematic experiments on modulated signal 



7070	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	5
 

 

datasets, we identify optimal architectures and establish performance baselines to guide future model development in this domain. 

The comparative framework provides actionable insights for both practical guidelines for model selection in real-world AMR 

implementations and foundational reference for developing next-generation AMR-specific neural architectures. 

2. Classical deep learning models applied in AMR 

2.1. Convolutional neural network model 

Convolutional Neural Network (CNN) can trace its origins to the neural network architecture with convolutional and pooling 

layers proposed by Japanese scientist Kunihiko Fukushima in 1980. This foundational work was later significantly advanced by 

Yann LeCun, leading to the development of modern CNN models. CNNs incorporate three key principles: local receptive fields, 

parameter sharing, and translation invariance, which collectively contribute to their exceptional performance in image recognition 

tasks [2]. Due to their superior capability in feature extraction, CNNs have become the predominant approach for various 

recognition and classification problems. 

A standard CNN comprises several essential components like convolutional layers, activation functions, pooling layers, 

Fully-connected layers and Batch normalization layers. The convolutional layer, as the fundamental building block, employs 

kernel operations to extract hierarchical features from input data. While CNNs were initially developed for processing 

two-dimensional image data, they can be effectively adapted for other domains by employing appropriate kernel configurations. 

O'Shea et al. first proposed a CNN-based Automatic Modulation Classification (AMC) method using In-phase/Quadrature (I/Q) 

components as inputs, establishing deep learning's superiority over traditional approaches [3]. In particular, CNNs have 

demonstrated remarkable success in automatic modulation recognition tasks, where properly designed architectures can extract 

discriminative features from various signal modulation formats. 

2.2. Residual neural network model 

The Residual Neural Network (ResNet) was first proposed by the research team led by Kaiming He in 2015 as an enhanced deep 

learning architecture based on convolutional neural networks [4]. This innovative model introduced the concept of residual 

learning to address critical challenges in deep network training, including network degradation, gradient vanishing, and explosion 

problems that commonly plagued traditional architectures. 

The fundamental innovation of ResNet lies in its residual learning framework, which reformulates the learning objective 

through identity mapping. Rather than directly approximating the desired underlying mapping (𝐻(𝑥)), the network learns residual 

functions (𝐹(𝑥) = 𝐻(𝑥) − 𝑥) that describe the difference between inputs and outputs. This approach offers two key advantages: 

The first one is that ResNet effectively mitigates gradient vanishing issues during backpropagation. And another advantage is that 

it enables efficient feature learning through minor input perturbations. 

The essential building block of ResNet is the residual block, which implements skip connections that combine input and output 

through element-wise addition. This design can preserve gradient flow throughout the network depth. It can also enhance model 

generalization capability and maintain network performance while enabling substantially deeper architectures [5]. 

2.3. Multi-scale contextual attention network model 

The Multi-Scale Contextual Attention Network (MCNet) is an advanced deep learning model that employs a parallel multi-scale 

structure with integrated attention mechanisms, utilizing an optimized CNN architecture for model training. In the context of 

Automatic Modulation Recognition (AMR), this architecture enables hierarchical feature extraction and cross-scale contextual 

integration, effectively enhancing both the model's representational capacity and robustness. 

The fundamental concept of MCNet lies in its multi-scale attention framework. The model incorporates multi-scale feature 

extraction, contextual attention fusion and cross-scale correlation learning. The multi-scale feature extraction is realized by a 

parallel branch process that inputs data at different temporal and spectral resolutions. The attention fusion can dynamically weight 

and combine features across scales using attention-based gating mechanisms. And the model can explicitly model relationships 

between features at different resolutions. 

Compared to conventional neural networks, MCNet can demonstrate superior performance when processing modulation 

formats with complex temporal-spectral characteristics [6]. The additional attention mechanism reduces redundant computations 

by focusing on salient features. Otherwise, the contextual attention module automatically adjusts to varying SNR conditions. 

Attention weights provide insights into feature importance across different scales, which enhances the interpretability. 
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3. Comparative analysis of deep learning models for AMR 

3.1. Dataset and data processing methodology 

3.1.1. Dataset description 

The experiment utilized the RadioML2018.01a Dataset, which encompasses 24 distinct modulation formats: OOK, 4ASK, 8ASK, 

BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 

AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, and OQPSK. 

The dataset incorporates 26 Signal-to-Noise Ratio (SNR) levels, ranging from -20 dB to 30 dB with 2 dB increments, covering 

both extreme low-noise and high-quality channel conditions. Each modulation format contains 4,096 frames, with each frame 

structured as a (1,024×2) array, resulting in a total of 2,555,904 frames across the dataset. 

3.1.2. Data processing methodology 

Given the substantial volume of the RadioML2018.01a Dataset, full-scale training with all samples would incur prohibitive 

computational overhead and drastically reduce experimental efficiency. To address this, selective SNR-based subsampling was 

implemented prior to model training. 

Specifically, five representative SNR levels (-20 dB, -10 dB, 0 dB, 10 dB, and 20 dB) were selected to construct a balanced 

subset for comparative analysis. Subsequent model training and evaluation were conducted exclusively on these sampled SNR 

conditions. 

3.2. Experiment design 

This study aims to investigate the performance of classical deep neural networks in Automatic Modulation Recognition (AMR). 

By examining how standard deep learning models classify diverse signal modulation formats, we seek to elucidate the fundamental 

principles of AMR and establish a baseline understanding of neural network applications. This foundational work will facilitate the 

subsequent development of optimized deep learning architectures for AMR tasks. 

The experimental methodology is as follows: Three canonical neural network architectures were selected for evaluation: 

Convolutional Neural Network (CNN), Residual Neural Network (ResNet), Multi-Scale Contextual Attention Network (MCNet). 

Using the preprocessed dataset containing five distinct SNR levels (-20 dB, -10 dB, 0 dB, 10 dB, and 20 dB), each model was 

trained and tested under identical conditions. The evaluation metrics included the confusion matrices for model performance and 

the accuracy curves across training epochs 

All models underwent a standardized training regimen with the following configurations: Each network was trained for a 

maximum of 150 epochs using the Adam optimizer with an initial learning rate of 0.001. To enhance convergence efficiency, we 

implemented an adaptive learning rate scheduler that reduced the rate by 50% whenever the validation accuracy failed to improve 

for five consecutive epochs. Additionally, an early stopping mechanism was employed to prevent unnecessary computation, 

terminating training if no reduction in validation loss was observed over 50 epochs. This dual strategy of dynamic learning rate 

adjustment and early termination ensured computational efficiency while maintaining optimization rigor. 

The hardware and software configurations employed in this experiment are detailed in Table 1. 

Table 1. Hardware and software configurations employed in the experiment 

Configuration Version Parameter 

Operating system Windows 11 64 bits 

CPU 12th Gen Intel(R) Core (TM) i7-12700H 2.30 GHz 

GPU NVIDIA GeForce RTX 3050 Laptop GPU 4.0 GB 

Programming language Python 3.9 

Deep learning frame 
Tensorflow 2.10.0 

Keras 2.10.0 
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3.3. Deep learning models applied in the experiment 

3.3.1. Convolutional neural network 

The convolutional neural network model used in our experiments contains two convolutional layers for primary feature extraction. 

Due to performance limitations of the experimental equipment, adding extra convolutional layers would introduce greater 

computational load and require additional pooling layers to prevent overfitting. The architecture of the convolutional neural 

network employed in this experiment is shown in Figure 1. 

 

Figure 1. The convolutional neural network applied in the experiment 

The deep learning model architecture processes input data with dimensions [2, 1024] through a sequential structure beginning 

with the first convolutional layer containing 50 filters of size 1×8 with Rectified Linear Unit (ReLU) activation while maintaining 

the original output dimensions, followed by a dropout layer that eliminates half of the features. The data then flows into a second 

convolutional layer equipped with 50 filters of size 2×8, again using ReLU activation, after which another dropout layer similarly 

removes half of the generated features. The network subsequently incorporates a flattening layer that transforms the 

multidimensional data into a one-dimensional vector, which is then fully connected to 256 neurons. Before the final classification 

stage, a third dropout layer is applied with the same 50% dropout rate, ultimately leading to the output layer's 24 neurons that 

correspond to the target modulation classification categories. 

3.3.2. Residual neural network 

The experimental implementation utilizes a streamlined residual neural network architecture that preserves the core residual 

learning principles while maintaining model performance. Specific modifications were made to the input and output data 

processing to optimize adaptation for the automatic modulation recognition task. The complete architecture of this customized 

residual neural network is presented in Figure 2. 

 

Figure 2. The residual neural network applied in the experiment 

The architecture of the residual neural network, as illustrated in the figure, processes input data with dimensions [2, 1024] 

through the following computational pipeline. The network initially employs a residual block comprising two convolutional layers 

with residual connections. The first convolutional layer utilizes 256 filters of size 1×3 with ReLU activation while maintaining 

identical input-output dimensions, followed by a second convolutional layer with 256 filters of size 2×3, also employing ReLU 

activation with dimensional preservation. The residual connection enables element-wise addition between the block's input and the 

second convolutional layer's output, implementing the fundamental residual learning mechanism. 

Subsequent to the residual block, the data flows through two additional convolutional layers, each containing 80 filters of size 

1×3 with ReLU activation and dimensional consistency. Following the fourth convolutional layer, a dropout layer with a 60% 
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dropout rate is applied for overfitting prevention. The network then transforms the processed features through a flattening layer 

that converts the high-dimensional data into a one-dimensional vector, which is subsequently fed into the first fully-connected 

layer with 128 neurons and ReLU activation, followed by another dropout layer with an identical 60% dropout rate. The final 

output layer consists of 24 neurons with softmax activation, generating the classification probabilities for the target modulation 

formats. 

3.3.3. Multi-scale contextual attention network 

The experimental framework employs an advanced architecture specifically optimized for processing two-dimensional input 

signals in automatic modulation recognition tasks. This network incorporates sophisticated hierarchical structures while 

preserving the essential residual connection mechanism from residual neural networks, demonstrating superior performance for 

modulation classification. Given the complexity of the multi-scale modules and the impracticality of exhaustive enumeration and 

graphical representation of all components, we provide a generalized structural description. The complete architecture of this 

multi-scale convolutional neural network is illustrated in the accompanying Figure 3. 

 

Figure 3. Multi-scale contextual attention network applied in the experiment 

The network architecture processes two-dimensional input data through a carefully designed sequence of computational 

components, beginning with an initial convolutional block that utilizes large 3×7 kernels with double-stride implementation to 

efficiently capture broad spatial features while employing max-pooling for regularization. The data then flows into a dual-branch 

preprocessing structure where spatially separated 3×1 and 1×3 convolutional filters independently process dimensional features 

before hybrid pooling reduces the parameter space in preparation for the multi-branch modules. 

Six distinct multi-branch modules form the core of the architecture, with the first module establishing the fundamental 

processing pattern: dimensionality reduction via 1×1 convolution followed by parallel processing through three separate branches 

applying 3×1, 1×3, and 1×1 convolutions respectively. The parallel outputs merge through concatenation before establishing 

residual connections with the original input, implemented through either direct addition or max-pooled addition pathways. 

Subsequent modules gradually increase in complexity, systematically expanding the channel depth from 32 to 96 while 

maintaining the triple-branch convolutional paradigm to deepen feature learning. 

The final classification stage begins with global average pooling to enhance regularization before applying 50% dropout and 

flattening the processed features into one-dimensional representation. A fully connected layer then projects these features to the 

24-dimensional output space where softmax activation generates the final classification probabilities. 

This architecture demonstrates several key innovations including hybrid spatial processing through strategically sized 

asymmetric kernels, adaptive feature fusion via parallel processing branches, progressive channel expansion coupled with residual 

learning, and multi-stage regularization through combined pooling and dropout strategies. The design achieves an optimal balance 

between comprehensive feature extraction, computational efficiency through dimensional management, and robust performance 

via hierarchical representation learning. 

The complete configuration is illustrated in the accompanying figure, showcasing the integrated data flow from input 

processing through the multi-branch feature extraction stages to final classification output. Each component contributes 

synergistically to the network's ability to handle complex modulation patterns while maintaining efficient computation suitable for 

practical implementation. 

3.4. Comparison and analysis of the model performance 

Following the model training under the specified experimental setup, we evaluated the performance through accuracy curves and 

confusion matrices. The results demonstrate that classification accuracy is highly dependent on Signal-to-Noise Ratio (SNR) 

conditions, with all models exhibiting significantly better performance at higher SNR levels. 

In extreme low-SNR scenarios (-20 dB and -10 dB), the models failed to distinguish between modulation schemes, consistently 

predicting only the most frequent modulation type in the training set. This suggests that when noise dominates the signal, the 

models converge to a trivial solution, losing discriminative capability. 
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The baseline CNN achieved 58.91% accuracy at favorable SNR levels. The ResNet architecture, incorporating residual 

learning, showed improved performance by better preserving temporal signal features. However, the most significant 

improvement came from the Multi-Branch CNN, which attained 82.39% accuracy by leveraging parallel feature extraction across 

multiple scales. There are also some key findings like: ResNet improved accuracy but increased training time by 50% compared to 

the baseline CNN. MCNet not only achieved higher accuracy but also demonstrated faster convergence, making it more suitable 

for practical AMR applications. 

Analysis of the confusion matrices revealed some challenges in modulation-specific classification. It shows the persistent 

difficulties in distinguishing between PSK and QAM modulations. Higher-order QAM schemes (e.g., 64QAM vs. 256QAM) were 

particularly challenging at lower SNRs (<10 dB), with accuracy dropping sharply. Otherwise, reliable classification generally 

required SNR levels above 10 dB for most modulation types. 

When it comes to the computational efficiency, while the ResNet's residual connections enhanced feature propagation, they 

came at a computational cost. In contrast, MCNet achieved superior efficiency by optimizing parallel processing, making it both 

more accurate and faster to train than the other architectures. 

These results highlight the critical role of SNR in AMR performance and demonstrate that advanced architectures like the 

MCNet can significantly improve both accuracy and efficiency. Future work should focus on enhancing low-SNR robustness 

while maintaining computational efficiency for real-time applications. The detailed result of this experiment is shown in Table 2 

below. The figures of the confusion matrix and the validation accuracy comparison are shown in Figure 4 to 9. 

Table 2. Experiment result 

 Epoch/s  
-20db -10db 0db 10db 20db 

Accuracy Iteration Accuracy Iteration Accuracy Iteration Accuracy Iteration Accuracy Iteration 

CNN 81s 4.11% 51 3.95% 56 46.43% 76 57.81% 76 58.91% 68 

ResNet 125s 3.98% 59 4.01% 67 44.39% 99 69.55% 80 82.60% 140 

MCNET 33s 3.98% 63 11.81 103 49.58% 66 78.88% 88 82.38% 99 

 

Figure 4. Confusion matrices of CNN outputs across five SNR levels 
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Figure 5. CNN’s validation accuracy comparison in different SNR 

 

Figure 6. Confusion matrices of ResNet outputs across five SNR levels 

 

Figure 7. ResNet’s validation accuracy comparison in different SNR 
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Figure 8. Confusion matrices of MCNet outputs across five SNR levels 

 

Figure 9. MCNet’s validation accuracy comparison in different SNR 

4. Conclusion 

This study investigates the performance of deep learning models in Automatic Modulation Recognition (AMR), with a focus on 

comparative advantages and limitations across neural network architectures. Among the three selected networks, the Multi-Scale 

Contextual Attention Network (MCNet) demonstrated superior recognition accuracy and computational efficiency, suggesting its 

enhanced suitability for AMR tasks. This finding implies that the multi-scale module architecture exhibits intrinsic advantages in 

spectral feature extraction. While this work empirically establishes the performance hierarchy of the evaluated networks, it does 

not provide an in-depth theoretical analysis of how structural differences contribute to AMR adaptability. Future research should 

extend the current framework to develop specialized architectures for challenging modulation formats (e.g., high-order 

QAM/PSK). Also, it requires Investigation of hybrid approaches combining existing networks to further improve accuracy. 

Furthermore, fundamental studies on the relationship between network topology and RF signal feature learning are also necessary 

to be conducted. 
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