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Abstract. As a primary medium for emotional expression, human facial expressions carry rich informational value. Recent 

advancements in residual networks and attention mechanisms have broadened their application in expression classification, yet 

challenges persist in suboptimal key feature extraction and complex model training. To address these issues, this study proposes a 

novel facial expression recognition method integrating residual networks with attention mechanisms. The framework employs 

ResNet50 as the backbone network for feature extraction, enhanced by the Convolutional Block Attention Module (CBAM) to 

autonomously learn and prioritize critical features. Further innovations include reconstructing residual modules within the 

backbone network to optimize feature extraction and introducing a CAM-adjusted CBAM-ERF mechanism to mitigate neuronal 

suppression in specific regions, thereby accelerating network convergence and classification efficiency. Experimental results 

demonstrate the proposed residual network achieves 73.45% and 96.97% accuracy on the FER2013 and CK+ datasets, 

respectively. 
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1. Introduction 

In the current digital and intelligent era, Artificial Intelligence (AI) technology is driving unprecedented transformations across 

various domains. Among these advancements, Facial Expression Recognition (FER), as a critical research direction in computer 

vision and AI, holds extensive applications in human-centric fields such as human-computer interaction, remote education, and 

driver fatigue detection [1]. With the rapid development of human-computer interaction technologies [2], affective computing has 

emerged as a prominent research focus, positioning itself as a pivotal challenge within computer vision [3]. 

The rapid evolution of deep learning has spurred significant interest in applying deep neural networks to expression 

classification tasks [4]. Researchers have designed classical architectures such as AlexNet, VGGNet, and GoogLeNet, which 

achieve high classification accuracy by deepening network layers. However, as networks grow deeper and learning capacity 

strengthens, models encounter the “degradation” phenomenon—manifested as gradient explosion/vanishing and deteriorating 

optimization outcomes. To address these challenges, He Kaiming’s team introduced the deep Residual Network (ResNet) in 2016, 

innovatively incorporating residual learning to mitigate gradient vanishing in ultra-deep networks [5]. 

Recent advancements in residual networks and attention mechanisms have further inspired researchers to integrate attention 

modules into expression recognition models, synergizing them with Convolutional Neural Networks (CNNs). While these 

enhanced algorithms improve recognition accuracy, the escalating depth and architectural complexity of deep neural networks and 

their variants lead to soaring model parameters. This trend results in suboptimal extraction of critical features and complicated 

training processes, highlighting the need for streamlined yet effective solutions in modern FER systems. 

2. Related work  

2.1. Research on Facial Expression Recognition 

Facial expression recognition stands as a pivotal research direction in computer vision and pattern recognition [6]. Over the past 

decades, researchers have explored diverse methodologies to achieve accurate recognition, ranging from traditional feature 

extraction and classifier-based approaches. Classical techniques such as PCA, HOG, and LBP laid the groundwork for early 
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advancements. Subsequent studies further enhanced these methods—for instance, SVM-based multiclass image classification 

frameworks were developed to evaluate airborne sensor data [7], while PCA-driven sparse representation strategies demonstrated 

improved recognition performance [8]. Pyramid-style hierarchical feature fusion algorithms were also proposed to extract both 

handcrafted and deep features [9]. 

Existing neural network methods primarily focus on the global semantic information of facial expressions while neglecting 

localized feature details, resulting in suboptimal feature extraction outcomes. To address this limitation, this study proposes a 

novel residual network architecture. Specifically, we replace the ReLU activation function in ResNet50 with PReLU, which retains 

the advantages of ReLU in the positive value domain to enhance the model's representational capacity while mitigating the “neuron 

death” issue. Additionally, we innovatively reconstruct the bottleneck residual modules to optimize architectural performance, 

thereby significantly improving the overall effectiveness of feature extraction. 

2.2. Attention mechanism 

The attention mechanism, inspired by human visual attention systems, has been widely adopted in computer vision and natural 

language processing. By enabling models to focus on critical regions during information processing, this mechanism significantly 

enhances performance in complex scenarios [10]. A milestone occurred in 2017 when the Google machine translation team 

introduced self-attention mechanisms in their seminal work “Attention Is All You Need,” which rapidly became a research hotspot 

and spurred integration into diverse deep learning frameworks [11]. 

In computer vision, prominent attention mechanisms include self-attention, spatial attention, and temporal attention. These 

mechanisms dynamically assign varying weights to different regions of input data, allowing models to prioritize contextually 

relevant features. For instance, the SE-Net architecture enhances critical features through channel-wise recalibration, which 

contributed to its success in the ImageNet competition. 

Diverging from existing approaches, our method integrates the Convolutional Block Attention Module (CBAM) into ResNet50 

as the backbone network. This hybrid architecture enables multi-dimensional weight reallocation across spatial and channel 

dimensions, allowing the model to autonomously learn and selectively emphasize discriminative features critical for expression 

recognition. 

3. Architecture of attention-enhanced residual network 

In facial expression recognition, the task requires identifying and classifying specific regions of interest rather than analyzing the 

entire facial image. To address this, we integrate attentional modules to emphasize discriminative feature regions. By synergizing 

attention mechanisms with deep learning frameworks, the model can adaptively focus on critical facial expression patterns, 

thereby enhancing recognition accuracy and robustness.  

3.1. CBAM attention mechanism 

CBAM is a widely adopted attention mechanism extensively applied in computer vision tasks such as image classification, object 

detection, and image segmentation. The CBAM framework comprises two sequential attention modules: Channel Attention 

Module and Spatial Attention Module. 

The Channel Attention Module dynamically weights feature channels to highlight the most salient feature channels while 

suppressing less informative ones. This enables the network to better capture semantic information by adaptively recalibrating 

channel-wise feature responses. Specifically, the module employs adaptive global average pooling followed by fully connected 

layers to learn channel-specific weights, thereby enhancing discriminative feature representation across channels. 

The Spatial Attention Module adaptively weights spatial positions within feature maps to emphasize critical regions and 

suppress non-essential areas. It operates by first aggregating multi-scale feature representations through parallel max-pooling and 

average-pooling operations. These pooled features are then concatenated and processed via convolutional layers and nonlinear 

activation functions to generate a spatial attention map. This map dynamically recalibrates the spatial dimensions of the feature 

map, enhancing discriminative regions while attenuating irrelevant ones. 

In convolutional neural networks, attention mechanisms refine intermediate feature maps by extracting both spatial and 

channel attention components. In Figure 1, the convolutional attention module sequentially integrates channel and spatial attention 

submodules. The channel submodule focuses on inter-channel dependencies, whereas the spatial submodule captures positional 

relevance. By hierarchically restructuring feature representations, this dual attention mechanism amplifies discriminative features 

while suppressing less relevant ones, thereby optimizing the network’s ability to capture task-specific visual patterns and improve 

recognition performance. 
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Figure 1. CBAM multiplies the attention weights obtained from the channel and spatial attention modules to derive the final 

integrated attention weights 

3.2. Residual module optimization 

The core innovation of ResNet lies in its residual blocks, which shift the learning objective from raw feature mapping to residual 

learning. This mechanism facilitates identity mapping, enabling deeper networks to achieve performance comparable to shallower 

architectures. Within these residual blocks, the ReLU activation function plays a pivotal role. 

Activation functions introduce nonlinear properties into neural networks, as purely linear transformations would render 

multi-layer networks equivalent to single-layer ones, incapable of capturing complex patterns. Common activation functions 

include Sigmoid, ReLU, Leaky ReLU, and Softmax. The ReLU function, employed in this study, maps negative inputs to zero 

while preserving positive values. Its widespread adoption in deep learning stems from accelerated convergence during training and 

its ability to mitigate the vanishing gradient problem. This characteristic allows ResNet to efficiently train deeper architectures, 

where residual connections preserve gradient flow and ReLU ensures effective gradient propagation. The mathematical 

formulation of the ReLU function is given in Equation (1). 

 𝑓(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

 (1) 

The ResNet-50 architecture employs two types of shortcut connections: identity shortcuts (solid lines) and projection shortcuts. 

Identity shortcuts directly add input and output features when channel dimensions match, whereas projection shortcuts utilize 1×1 

convolutional layers to adjust channel dimensions for dimensionally mismatched connections. However, in the original bottleneck 

design, the 1×1 convolution within projection shortcuts discards 75% of input features, potentially leading to critical information 

loss and compromising expression feature extraction. 

To mitigate this issue, we redesign the projection shortcuts by introducing hierarchical residual-like pathways. Instead of 

aggressive feature compression, the improved structure progressively groups filters and applies multi-scale feature fusion, 

preserving discriminative details while harmonizing channel dimensions. Comparative schematics of baseline connections  and 

our enhanced design illustrate the refined feature propagation mechanism (Figure 2). This modification enhances the expressivity 

of projection shortcuts, ensuring comprehensive retention of localized expression patterns such as eye squint or lip curvature, 

thereby boosting recognition robustness. 

      

(a) Solid line connection  (b) Dashed line connection                 (c) Improved dashed line connection      

Figure 2. Residual connection structure diagram 
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3.3. Residual network with enhanced attention mechanism 

The CBAM integrates a dual-path attention mechanism, where channel and spatial attention outputs are element-wise multiplied to 

generate refined feature representations. However, the original Channel Attention Module (CAM) employs ReLU activation, 

which risks neuron suppression within specific activation intervals due to gradient saturation. To address this, we substitute ReLU 

with the Serf activation function (mathematically defined in Equation 2). This replacement mitigates “neuron death” by preserving 

gradient flow in negative-value regions while maintaining nonlinear modeling capabilities. The Serf-enhanced CAM module thus 

ensures more stable gradient propagation during attention weight calibration, enhancing the network's ability to capture subtle 

expression-related features without sacrificing computational efficiency. 

 𝑓(𝑥) = 𝑥𝑒𝑟𝑓(ln(1 + 𝑒𝑥)) (2) 

Through systematic embedding, the CBAM-ERF module is strategically incorporated between successive residual layers. This 

design stems from the observation that ResNet’s bottleneck blocks inherently complete localized feature extraction, thereby 

creating optimal nodes for attention-driven feature recalibration. By interleaving CBAM-ERF after each bottleneck, the network 

achieves hierarchical feature transition through spatial-channel attention refinement, effectively bridging coarse-to-fine feature 

hierarchies. 

The Serf-enhanced CAM component within CBAM-ERF mitigates gradient saturation in negative activation regions, ensuring 

stable attention weight propagation across layers. The integrated architecture maintains residual learning principles while 

augmenting discriminative feature emphasis, particularly for subtle expression cues like micro-expressions around the nasolabial 

folds. This hybrid design balances computational efficiency and representational capacity, enabling end-to-end optimization of 

both feature extraction and attention-guided feature enhancement. 

4. Experiments and results 

This section presents experimental evaluations on two widely adopted benchmarks: FER2013 and CK+. We conduct comparative 

analyses against state-of-the-art methods to validate the efficacy of each component in our proposed framework. 

4.1. Datasets 

The FER2013 dataset comprises 35,886 facial expression images categorized into seven emotion classes: anger, disgust, fear, 

happiness, sadness, surprise, and neutrality. The dataset is partitioned into 28,708 training samples and 3,589 samples each for 

validation and testing. All images are grayscale and resized to 48×48 pixels. 

The CK+ dataset similarly categorizes expressions into seven classes, aligning with the emotion labels of FER2013. Each 

image sequence in CK+ includes annotated labels indicating the expressed emotion or facial action category.  

4.2. Experimental results and analysis 

As illustrated in Figures 3 and 4, confusion matrix analysis reveals that the proposed model achieves 12.7% and 9.3% 

improvements in diagonal classification accuracy on the FER2013 private and public datasets, respectively, compared to the 

baseline architecture. This validates significant enhancement in the model’s global discriminative capability for expression 

features. Nevertheless, persistent off-diagonal misclassification rates highlight critical challenges in distinguishing subtle 

inter-class variations, particularly among expressions with overlapping facial muscle movements. 

       

Figure 3. Confusion matrix for FER2013 private test set 



Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	4	|	4949
 

 

 

Figure 4. Confusion matrix for FER2013 public test set 

As shown in Figure 5 for CK+ dataset results, the proposed model demonstrated significant improvement in “Sad” expression 

recognition (33% → 89%), yet maintained an 11% confusion rate with “Angry” expressions, attributed to overlapping local 

features such as glabellar wrinkles.This indicates slight overfitting in small-sample scenarios, yet the model retains strong 

generalization capability. 

 

Figure 5. Confusion matrix for CK+ dataset 

4.3. Experimental results 

To compare the proposed method with other machine learning methods and various neural network algorithms, we conducted 

comparative experiments across different datasets. 

Experiments based on the FER2013 dataset. We compared our model with other methods, including CNN approaches, transfer 

learning-based methods, and attention mechanism-based methods. The detailed results, demonstrating our method's superior 

performance, are presented in Table 1. Specifically, compared to other metric learning methods, our approach achieves superior 

Facial Expression Recognition (FER) accuracy. Furthermore, our method exhibits advantages over two convolutional neural 

network-based methods, EfficientNet and ResNet+DNN. 

Experiments based on the CK+ dataset. We compared our model with other methods, including CNN-based approaches and 

graph convolution-based methods. The detailed results, demonstrating our method's superior performance, are presented in Table 2. 

Our approach achieves higher FER accuracy than previous methods, particularly learning methods Furthermore, our method 

shows advantages over two convolutional neural network-based methods that incorporate attention mechanisms, ResNet+CBAM 

and ResNet+SE. 

Table 1. Comparison of recognition accuracies of various methods on the FER2013 dataset 

Dataset Method Setting (based) Accuracy 

FER2013 

CNN image 65.97% 

Dense_FaceLiveNet sequence 70.02% 

EfficientNet sequence 71.02% 

ResNet+DNN image 72.67% 

APRNET50 image 73.00% 

Ours image 73.45% 
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Table 2. Comparison of recognition accuracies of various methods on the CK+ dataset 

Dataset Method Setting (based) Accuracy 

CK+ 

GCN+PLPP sequence 93.83% 

Em-AlexNet image 94.25% 

ResNet+CBAM image 94.58% 

SACNN-ALSTMs image 95.15% 

ResNet+SE image 95.25% 

Ours image 96.97% 

 

The facial expression recognition method integrating residual networks and attention mechanisms proposed in this study 

effectively enhances network performance. The optimized ResNet-50 backbone excels at extracting comprehensive facial features, 

while the attention mechanism selectively amplifies discriminative local patterns. Residual modules further refine feature 

correlations, collectively achieving recognition rates of 73.45% and 96.97% on the FER2013 and CK+ datasets, respectively. 

5. Conclusions 

This paper presents a facial expression recognition framework combining residual networks and attention mechanisms. 

Experimental validation on FER2013 and CK+ datasets demonstrates superior performance, with accuracy rates of 73.45% and 

96.97%, respectively. These results confirm the architecture’s capability to balance feature extraction precision and discriminative 

power, even across datasets with significant disparities in sample size and resolution. 

The model’s robustness is evidenced by minimal accuracy fluctuations and rapid convergence during training. While slight 

overfitting is observed in small-sample scenarios, the framework maintains strong generalization, achieving 90.2% stabilized test 

accuracy on CK+. 

Future work will extend this approach to video-based datasets to capture temporal dynamics of expressions, thereby enhancing 

real-world applicability. Additionally, addressing inter-class confusion through finer-grained local feature disentanglement will be 

prioritized to advance practical deployment. 
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