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Abstract. To improve the intermodal service at Qingdao Jiaodong Airport, addressing operational challenges such as fuzzy 

passenger demand layering and insufficient cross-modal coordination, and to solve the core issues of supply-demand mismatches 

and a single pricing mechanism in the air-rail intermodal ticketing system, this study proposes a personalized ticketing optimization 

strategy based on user profiling. First, through extensive survey data, the study analyzes the personal attributes and travel 

characteristics of the surveyed passengers. Then, using the K-means clustering algorithm, the study clusters passengers' 

multidimensional features and determines the optimal number of clusters through the elbow method and silhouette coefficient 

method. This leads to the establishment of differentiated user labels: economy-class passengers, business-class passengers, and 

leisure-class passengers. The market segmentation research on passenger groups shows that these three distinct groups perceive 

the bottlenecks of intermodal services differently, especially exhibiting significant layering features in the key dimensions of time 

sensitivity and price sensitivity. The results provide a comparative scheme for improving the air-rail intermodal ticketing service 

at Qingdao Jiaodong International Airport, offering differentiated service strategies for each passenger group. Through responsive 

demand and resource optimization, this study has significant practical implications for enhancing passenger experience and 

strengthening the market competitiveness of the service. 
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1. Introduction 

Qingdao Jiaodong International Airport [1, 2] has pioneered the integration of aviation, high-speed rail, and urban rail transit 

systems, achieving a seamless vertical connection with zero transfers, becoming the first such transportation hub in China. Through 

innovations such as establishing urban terminals and piloting high-speed rail ticket exemptions, it has initially formed an “air-rail 

integration” intermodal transport model. However, its ticketing services still face two main bottlenecks: first, the lack of diverse 

product offerings resulting in insufficient customer group coverage; second, the need for breakthroughs in differentiated pricing 

and sustainable service models. Existing research on air-rail intermodal ticketing optimization mostly focuses on macro-level 

aspects. For example, Gang et al. [3] proposed standards for multi-transport mode ticket information sharing interfaces, Hui et al. 

[4] constructed a dual-layer pricing model for “one-ticket” intermodal transport, and Xin et al. [5] designed an intermodal service 

system based on the MaaS (Mobility as a Service) concept. However, these studies generally suffer from insufficient analysis of 

micro-level behavior, especially in failing to integrate user profiling technology to achieve precise demand layering. Notably, the 

application of user profiling in transportation is gradually emerging. For instance, Grison et al. [6] revealed the interactive effects 

of user attributes and situational factors on public transportation route choices using key event analysis methods; Moussa et al. [7] 

proposed a personalized passenger information system based on the ELECTRE multi-criteria decision method, combining dynamic 

weight optimization for public transport recommendation strategies. However, existing studies rarely focus on air-rail intermodal 

scenarios and often neglect the collaborative analysis of passengers' multidimensional attributes and travel characteristics. Based 

on this, this paper focuses on the construction of a comprehensive intermodal transport system between civil aviation and urban 

metro systems, using the K-means clustering algorithm [8, 9] for user segmentation. It proposes ticketing optimization strategies 

for different passenger groups, providing a theoretical basis for the “fine-grained” management and diversified services of the 

intermodal transport market. 



Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	4	|	1919

2. Data collection 

The purpose of this survey is to accurately grasp the travel demand characteristics of different passenger groups, thereby providing 

a solid data foundation for the subsequent ticketing optimization strategies. The survey content includes basic personal attributes 

and travel-related characteristics. Personal attributes cover gender, age, education level, occupation, and monthly income. Travel 

characteristics include travel purpose, frequency of use, travel expenditure, and reasons for choosing intermodal transport. The 

survey participants were limited to the Qingdao area to ensure that all respondents had real experience with air-rail intermodal 

transfers, either from high-speed rail to air travel or vice versa. A total of 1,060 valid questionnaires were collected. 

The survey sample was gender-balanced, with the majority of respondents aged 19–30 (46.23%). Passengers with junior college 

or undergraduate education accounted for 58.43%, and office workers represented the largest occupational group (50.94%). More 

than 60% of the passengers were in the low- to middle-income brackets. In terms of travel characteristics, the main reasons for 

choosing intermodal transportation were time savings (50%) and cost savings (45.28%). Key factors influencing the choice of 

intermodal services were ticket price (79.25%), comfort (62.26%), and time (41.51%). The primary travel purposes were tourism 

(47.17%) and business/work (23.58%), with the combined share of these two groups exceeding 70%. Given their dominant 

proportion, the decision-making characteristics of tourists and business travelers have a decisive influence on the overall air-rail 

intermodal transport market. 

To identify representative passenger groups, it was necessary to screen the variables involved in the survey and select 

appropriate variables for the K-means clustering process. The variables from the database of personal and travel attributes were 

tested in different combinations for clustering, and the clustering outcomes were evaluated. Ultimately, the variables used for K-

means clustering were finalized as shown in Table 1: 

Table 1. Selected clustering variables 

Attribute Category Variable Name Variable Type 

Personal Attributes 

Age Numerical 

Education Level Numerical 

Occupation Nominal 

Monthly Income Numerical 

Travel Characteristics 

Travel Purpose Nominal 

Frequency of Use Numerical 

Travel Expenditure Numerical 

Reasons for Choosing Intermodal Transport Multiple-choice 

3. Data processing and analysis 

This study leverages the efficiency of the K-means algorithm in handling large-scale datasets. The optimal value of K is 

dynamically determined using the elbow method [10] and the silhouette coefficient method [11], allowing the model to adapt to 

different data distributions. Combined with feature engineering, the study conducts an in-depth analysis of passenger behavior, 

uncovering more valuable features to enhance clustering performance. This approach enables effective classification of air-rail 

intermodal passengers and the establishment of corresponding user labels, thereby supporting the delivery of more personalized 

services. 

3.1. Clustering methodology for passenger profiling 

3.1.1. Data preprocessing 

Before conducting clustering analysis, the data underwent preprocessing. The dataset was checked for missing values. For 

variables with few missing values, imputation was done using the mean (for numerical variables) or mode (for categorical 

variables). Variables with excessive missing values were either removed or the related samples were excluded. Outliers were 

detected using the boxplot method [12], and the Winsorization technique [13] was applied to handle these outliers by capping 

extreme values with upper and lower bounds. Categorical variables were encoded into numerical form using dummy variable 

encoding to facilitate the clustering analysis. 
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3.1.2. Determining passenger cluster categories 

The elbow method was used to identify the optimal number of clusters (K). The method involves calculating the total within-

cluster Sum of Squares (SSE) for different values of K, and identifying the point where the rate of decline in SSE slows 

significantly — the so-called “elbow point.” 

𝑆𝑆𝐸 = ∑ ∑ ||𝑥 − 𝜇𝑖||2

2
𝑥∈𝐶𝑖

𝑘
𝑖=1                                    (1) 

Where 𝑘 denotes the number of clusters; 𝐶𝑖 represents the 𝑖 − 𝑡ℎ cluster; 𝑥 refers to the data points belonging to the 𝑖 − 𝑡ℎ 

cluster; and 𝜇𝑖 is the centroid of the 𝑖 − 𝑡ℎ cluster. 

As K increases, SSE naturally decreases since additional centroids reduce the distance between points and their assigned centers. 

However, past a certain point, the marginal gain diminishes — this is identified as the “elbow,” where the trade-off between model 

complexity and clustering performance is balanced. 

Using the selected clustering variables, the KMeans function from the Python scikit-learn machine learning toolkit was 

employed to construct the clustering model. The variation in mean squared error with increasing cluster numbers was visualized 

as a line graph (see Figure 1). 

 

Figure 1. Relationship between number of clusters and SSE 

As shown, the SSE steadily decreases with an increase in the number of clusters, which aligns with expectations. Notably, the 

drop in SSE is steep between clusters 2 and 3, after which the decline slows. This supports the appropriateness of choosing K = 3. 

3.1.3. Clustering results for air-rail intermodal passengers 

After determining the number of clusters, SPSS software was used to iteratively cluster passenger data from Qingdao’s air-rail 

intermodal travel database, based on personal attributes and travel characteristics. 

Cluster Center Update Formula: 𝐶𝑗 =
1

𝑁𝑗
∑ 𝑥𝑥∈𝑆𝑗

. Where 𝐶𝑗 is the centroid of the j-th cluster, 𝑁𝑗  is the number of data points 

in cluster j, and  𝑆𝑗denotes the set of points belonging to cluster j. 

Distance from Point to Cluster Center Formula: ⅆ(𝑥, 𝐶𝑗) = √∑ (𝑥𝑖 − 𝐶𝑗,𝑖)2𝑛
𝑖=1 ,Where ⅆ(𝑥, 𝐶𝑗) represents the distance from 

data point X to the centroid 𝐶𝑗 of its corresponding cluster. Through multiple iterations, the algorithm updated cluster centers until 

convergence was achieved — that is, when centers remained constant or changed minimally. This ensured algorithmic stability 

and a reliable clustering outcome. The details are shown in Table 2 and Table 3: 
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Table 2. Final cluster centers 

 
Cluster 

Cluster 1 Cluster 2 Cluster 3 

Gender Female Female Male 

Age 31-45 31-45 19-30 

Education Level Undergraduate Junior College Junior College 

Occupation Office Worker Freelancer Student 

Monthly Income High Medium Low 

Travel Purpose Business Tourism Study 

Reason for Intermodal Use Time-saving Cost-saving Time-saving 

Travel Expenditure High Medium Low 

Frequency of Use Quarterly Quarterly Quarterly 

Table 3. Sample distribution by cluster 

Proportion of Total Sample 

Cluster 

Cluster 1 37% 

Cluster 2 35% 

Cluster 3 28% 

Valid 100% 

Missing 0 

 

Based on the K-means clustering results, the passengers were classified into three categories: Cluster 1, Cluster 2, and Cluster 

3. Their proportions in the total sample were 37%, 35%, and 28%, respectively. These clusters were then labeled as follows: 

Cluster 1: Business Travelers; Cluster 2: Leisure Travelers; Cluster 3: Budget Travelers 

To visually validate the clustering results, a two-dimensional scatter plot was generated using the Seaborn library in Python, 

showing the distribution of passenger groups based on two core dimensions — monthly income and travel expenditure (see Figure 

2). 

 

Figure 2. Clustering results visualization 
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3.2. Evaluation of passenger profiling for Qingdao’s air-rail intermodal transport 

The silhouette coefficient method was used to evaluate the clustering quality and adjust the model if necessary. 

Silhouette Coefficient Formula: 𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
                           (2) 

Where 𝑎(𝑖): For each passenger data point 𝑖, calculate the average distance between that point and all other points within the 

same cluster; 

𝑏(𝑖): For each passenger data point 𝑖, calculate the average distance between that point and all points in the nearest other 

cluster. For example, for Category 1 (business travelers), compute the average distance between each business traveler data point 

and all points in Category 2 (leisure travelers) or Category 3 (economy travelers), and take the minimum of these averages as 𝑏(𝑖). 

By averaging the silhouette coefficients of all passenger data points, the overall silhouette score is obtained. The average 

silhouette coefficient across all data points was 0.58, indicating that the clustering result is reasonably good, and the passenger 

segmentation is appropriately defined. 

4. Optimization plan for air-rail intermodal ticketing 

To address the issues of supply-demand mismatch and a single pricing mechanism in Qingdao Jiaodong Airport’s air-rail 

intermodal services, this section proposes a differentiated ticketing strategy system based on the previously constructed passenger 

clustering model—Business Travelers, Leisure Travelers, and Budget Travelers. 

4.1. Business travelers 

Accounting for 37% of the total passenger population, business travelers are primarily driven by the value of time and exhibit 

significantly higher annual travel frequencies compared to other groups, making them highly loyal customers. Therefore, 

optimizing ticketing services for this time-sensitive group is crucial. Recommendations include: Priority security screening lanes; 

Dedicated shuttle services directly connecting passengers to the security checkpoint within the airport; Post-departure transport 

arrangements; Direct luggage delivery to hotels. These value-added services aim to minimize travel time. Furthermore, a suite of 

VIP and priority services should be integrated to fully meet this group’s expectations for premium service quality. 

4.2. Leisure travelers 

Comprising 35% of the sample, leisure travelers prioritize comfort and present high potential for growth. Their travel patterns are 

concentrated around holiday peak periods, which makes enhancing travel experience value especially important. Suggested 

optimization strategies include: Improving on-time performance of flights; Offering compensation and care measures for delays 

to enhance customer satisfaction; Launching “Cultural and Tourism Express” product lines; Implementing flexible refund and 

change policies; Developing seasonal floating pricing systems. These initiatives aim to strengthen customer engagement and foster 

brand loyalty. 

4.3. Budget travelers 

Making up 28% of the passenger population, budget travelers are highly price-sensitive, focusing on cost-effectiveness and value 

for money. They are particularly concerned about fees for ticket changes and cancellations, which significantly influence their 

travel decisions. To attract this segment, airlines can implement various preferential measures: Launch “intermodal travel packages” 

combining second-class rail seats with economy-class flight tickets; Offer early-bird tiered discounts; Designate off-peak fare 

zones with special rates. Additionally, supporting services such as dedicated booking channels for students and senior citizens and 

real-time price alert features can improve affordability and accessibility. 

By applying real-time clustering analysis, the ticketing system can optimize resource allocation, improve order processing 

efficiency during peak times, and increase revenue from intermodal products. Furthermore, integrating data interfaces among air, 

rail, and road transport operators, along with establishing cross-transport revenue-sharing mechanisms, can significantly reduce 

complaint rates, and enhance the overall quality of intermodal services. 

5. Conclusion 

Despite limitations in sample scope, which did not cover a broader demographic range, this study employed a K-means clustering 

algorithm based on user profiling to conduct in-depth market segmentation of passengers using Qingdao Jiaodong Airport’s air-

rail intermodal services. The research identified the distinct demand characteristics and behavioral differences among Business, 

Leisure, and Budget passenger groups, providing a solid theoretical basis for ticketing optimization. The proposed personalized 

ticketing strategies aim to address issues such as supply-demand mismatches and uniform pricing mechanisms, while also 
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enhancing passenger experience and improving the competitiveness of intermodal services. Future research should consider 

expanding the survey scope, enriching the data sample, and incorporating more influencing factors and variables to further explore 

passenger needs, thus offering a more comprehensive and in-depth framework for optimizing intermodal ticketing systems. 
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