
Advances	in	Engineering	Innovation	Vol.16	Issue	2 EWA	Publishing
Available	Online:	21	March	2025 DOI:	10.54254/2977-3903/2025.21674

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://aei.ewadirect.com

A UDS-based ECU bootloader programming management

framework with configurable architecture

Qiji Wu1*, Feng Luo1

1School of Automotive Studies, Tongji University, Shanghai, China

*Corresponding Author. Email: 13764987893@163.com

Abstract. A UDS protocol-based ECU Bootloader software architecture adaptable to diverse programming standards is designed

and implemented in this study. The proposed architecture adopts a layered design philosophy, comprising five hierarchical levels.

The Reprogramming Sequence Manager is responsible for managing the programming process and handling parameters for

programming steps. Inter-module communication is realized through standardized RTE interfaces for signal transmission and

reception, as well as triggering and monitoring of execution events. The modular layered architecture, combined with functional

decoupling design, ensures enhanced software reusability and practical applicability. Experimental results demonstrate that the

architecture adapting to different programming sequences and diagnostic service specifications.

Keywords: ECU, UDS, bootloader, layered software architecture, programming management

1. Introduction

With the rapid development of the automotive industry, the complexity of vehicle system software has increased significantly,

making the complete elimination of software vulnerabilities before vehicle delivery impossible. In order to reduce recall costs

caused by software defects, online software update capabilities are required to be supported by numerous Electronic Control Units

(ECUs) in modern vehicles. In this context, program update methods based on Controller Area Network (CAN) communication

have been adopted, but several limitations are presented by these approaches [1]. For instance, the absence of transport layer

protocol support prevents the correct sequencing of message transmissions from being guaranteed. Moreover, the validity and

reliability of downloaded data cannot be ensured due to the lack of validation of the downloaded data and proper security

verification for accessors. Bootloaders based on protocols such as Unified Diagnostic Services (UDS) and CAN Calibration

Protocol (CCP) have been employed to enhance the stability and reliability of software upgrades [2, 3]. However, due to the

absence of standardized definitions for software structure and interfaces, the reusability of the software across different

requirements has been found to be insufficient. Consequently, an online update software architecture compliant with Hersteller

Initiative Software (HIS) standards and applicable to multiple hardware platforms has been proposed [4]. Nevertheless, the

functional design of application layer modules related to diagnostics and programming control has not been further detailed,

resulting in a high degree of coupling.

Current research on Bootloader software primarily focuses on implementation methods for different hardware platforms and

the design of layered software architectures. However, notable deficiencies remain in the modular design of programming

management functions, making it difficult to fully accommodate various diagnostic standards, reprogramming specifications, and

customization requirements. To address these challenges, this paper presents a detailed design of a programming management

framework with configurable architecture that supports programming sequence management and diagnostic message processing,

based on an analysis of Bootloader functional scenarios. The reusability of the proposed solution under different downloading

requirements is validated.

The structure of this paper is as follows: Section 2 introduces the fundamental concepts of Bootloader based on the UDS

protocol. Building upon this foundation, Section 3 details the design methodology of the Bootloader software architecture, the

interaction interfaces among modules, and the implementation of the Reprogramming Sequence Manager. Section 4 verifies the

feasibility of the proposed solution across various downloading requirements. Finally, Section 5 concludes the paper with a

summary and relevant conclusions.

Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	2	|	8787

2. UDS protocol-based ECU bootloader

The primary functionality for ECU software upgrades is implemented by the Bootloader, which is responsible for correctly

receiving application or calibration data transmitted from a client, writing it to predefined storage spaces, and validating the

integrity of the downloaded data. As illustrated in Figure 1, the Bootloader consists of three components: the Boot-Manager, the

Reprogramming Software, and the Flash Driver. The Flash Driver is stored in the Random Access Memory (RAM) area, while

the Boot-Manager and the Reprogramming Software reside in a protected flash region. The application software is allocated to the

programmable region.

Figure 1. Block diagram of bootloader software structure

The Boot-Manager is designed to manage startup states and control the timing of transitions between diagnostic sessions. The

Reprogramming Software is executed exclusively during programming requests, managing all diagnostic services and application

programming control functionalities within the reprogramming workflow. The Flash Driver provides interfaces for erasing and

writing operations on flash memory. To mitigate severe security risks caused by abnormal Flash operations, the Flash Driver must

be loaded into the RAM area during programming tasks and cleared upon completion.

The ECU reprogramming process comprises three phases: pre-programming, main programming, and post-programming.

During the pre-programming phase, the primary objective is to verify whether current conditions meet ECU online upgrade

requirements. This phase involves network environment configuration, deactivation of non-diagnostic communication, and

suspension of Diagnostic Trouble Code (DTC) logging functionality to ensure the ECU enters an appropriate programming state.

The main programming phase focuses on authorizing external programming devices, downloading flash driver and application

data, and validating all downloaded content. The post-programming phase restores the network environment by reactivating non-

diagnostic communication and DTC logging across all ECUs, followed by switching the diagnostic session back to the default

mode. After the application update process is completed, the ECU should transition from running the Bootloader to executing the

updated application. The Boot-Manager is responsible for performing the program jump based on the application's entry address,

ensuring the ECU functions correctly with the upgraded software.

3. Implementation of bootloader programming management feature

3.1. Layered software architecture of bootloader

In practical applications, Bootloader is deployed on different hardware platforms. The layered design of the software architecture

and the standardized interface definition allow hardware-related components to be platformized, facilitating the reusability of

Bootloader software modules and the extensibility of functionalities.

The Automotive Open System Architecture (AUTOSAR) achieves the standardization and platformization of basic software

related to ECU hardware by defining standardized software functional components and interaction interfaces. This ensures the

independence of application layer software from the underlying hardware-related software modules. The software architecture

defined by AUTOSAR adopts a layered structure, centered around the Runtime Environment (RTE). The application layer and the

basic software layer interact through the RTE standard interface to enable data exchange among various modules [5, 6]. As shown

in Figure 2, referencing the layered software architecture of AUTOSAR and considering the functional requirements of Bootloader

CAN

CAN Bus

Reprogramming Software

APP-Entry

P
ro

g
ra

m
m

a
b

le

R
eg

io
n

P
ro

te
ct

ed
 F

la
sh

R
eg

io
n

Hardware

RAM

Application Software

Boot-Manager

BL-Entry

Flash Dr iver

8888	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	2

along with module reusability, the software is divided into five layers from bottom to top: the MCU Abstraction Layer, the ECU

Abstraction Layer, the Service Layer, the RTE Runtime Environment, and the Application Software Layer.

Figure 2. Layered software architecture of flash bootloader

The MCU Abstraction Layer implements only the chip hardware driver code required for Bootloader. It includes general digital

I/O drivers supporting CAN communication, CAN drivers, and SPI Handler drivers, as well as EEPROM drivers and FLASH

drivers supporting erase and storage functions. Additionally, it includes MCU drivers, General-Purpose Timer (GPT) drivers , and

Watchdog (WDG) drivers for system services. The ECU Abstraction Layer abstracts the ECU hardware structure and provides a

unified access interface for upper layers. This layer consists of the CAN transceiver driver, memory abstraction, and memory

abstraction interface. The Service Layer provides services required during the programming process. It includes the Diagnostic

Communication Manager (DCM) and Transport Protocol Layer, which implement diagnostic service functions, as well as the

Memory Manager and Backup Manager, which enable logical block erasure, data writing, and data backup. Additionally, it

contains the system service modules for task scheduling and watchdog management. Within the Bootloader Application Layer,

the Boot-Manager and Reprogramming Sequence Manager handle server startup and reprogramming state and process

management, while the Extended Security Module provides cryptographic computation interfaces as needed.

3.2. Standardized interfaces and interaction methods

In AUTOSAR, software interfaces are categorized into three types: standard interfaces for communication between basic software

modules, AUTOSAR interfaces for communication between application layer execution entities and between execution entities

and basic software service layer modules, and standardized AUTOSAR interfaces for specific service ports within certain service

function modules in the basic service layer.

Figure 3. Interfaces of programming management-related modules

Runtime Environment (RTE)

DIO Driver

I/O Drivers

SPI Handler CAN Driver

Communication Drivers

MCU Abstraction Layer

EEPROM Driver Flash Driver

Memory Drivers

MCU/GPT/WDG Driver

Microcontroller Drivers

ECU Abstraction Layer

CAN Transceiver Driver

CAN Interface

EEPROM

Abstraction

Flash EEP

Emulation

Memory Abstraction Interface

Flash

Abstaction

CAN Transport Protocol

Diagnostic Communicaiton Manager

Diagnostic Communication Services Memory Services

Memory Manager

Services Layer

T
ask

 S
ch

ed
u

lin
g

 M
an

ag
er

W
atch

d
o

g
 M

an
ag

er

System Services

Backup Manager

Bootloader Application

Boot-Manager Extended Security Module Reprogramming Sequence Manager Test Module

Boot-Manager

Diagnostic

Communication

Manager

C/S Interface

SendResponse(IN* arg1,OUT* arg2)

S/R Interface

CurrentSession(IN* arg1,OUT* arg2)

C/S Interface

0x10_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x11_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x28_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x85_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x3E_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x31_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x34_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x36_Ind(IN* arg1, IN* arg2,OUT* arg3)

0x37_Ind(IN* arg1, IN* arg2,OUT* arg3)

...

C/S Inter face

LogcialBlockBackup(IN* arg1,OUT* arg2)

S/R Interface

BackupMemoryAddress(IN* arg1,OUT* arg2)

BackupMemorySize(IN* arg1,OUT* arg2)

S/R Interface

RollbackMemoryAddress(IN* arg1,OUT* arg2)

RollbackMemorySize(IN* arg1,OUT* arg2)

C/S Interface

LogcialBlockRollback(IN* arg1,OUT* arg2)

C/S Interface

SecurityGetSeed(IN* arg1,OUT* arg2)

SecuritySendKey(IN* arg1,OUT* arg2)

S/R Interface

EraseMemoryAddress(IN* arg1,OUT* arg2)

EraseMemorySize(IN* arg1,OUT* arg2)

WriteMemoryAddress(IN* arg1,OUT* arg2)

WriteMemorySize(IN* arg1,OUT* arg2)

CheckMemoryAddress(IN* arg1,OUT* arg2)

CheckMemorySize(IN* arg1,OUT* arg2)

C/S Interface

MemoryErase(IN* arg1,OUT* arg2)

MemoryWrite(IN* arg1,OUT* arg2)

MemoryCheck(IN* arg1,OUT* arg2)

Extended Secur ity

Module

Reprogramming

Sequence Manager

Backup Manager

Memory Manager

Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	2	|	8989

The programming process management functions are implemented through the collaboration of three types of modules: the

programming step requester, the manager, and the executor. To accommodate the differences between diagnostic communication

and programming processes, AUTOSAR interfaces are used for data and service provisioning between modules. As illustrated in

Figure 3, programming management-related modules utilize Sender/Receiver (S/R) type interfaces for information transmission

and reception, and Client/Server (C/S) type interfaces for event triggering and result feedback. The Diagnostic Communication

Manager, acting as the requester of programming steps, triggers the execution of programming steps through an asynchronous C/S

interface after receiving a valid diagnostic service request. It then verifies execution results and retrieves return data. The

Reprogramming Sequence Manager, serving as the manager of programming steps, sets input parameters for programming

operations using the S/R interface upon receiving a programming step request. It triggers the execution of programming operations

via an asynchronous C/S interface and monitors execution results.

3.3. Configurable reprogramming sequence manager

Differences in the Bootloader programming process significantly impact software implementation. A well-structured programming

process management method helps prevent unnecessary modifications to the software architecture. The Reprogramming Sequence

Manager, which is responsible for managing the programming process and handling parameters of reprogramming steps, is

designed to mitigate the effects of requirement discrepancies on the software architecture.

During the programming process, a single diagnostic service may require multiple operation steps, and each operation step can

trigger a specific event within an executor managed Runnable Entity, which subsequently initiates predefined actions. As depicted

in Figure 4, the Reprogramming Sequence Manager identifies the operation steps and event sequences to be executed and controls

their timing and data flow during execution.

Figure 4. Data flow diagram of programming process management

When the requester of programming steps, DCM, receives a valid request, the Rte_Call function of the asynchronous C/S

interface is invoked to transmit the requested service type, sub-function, and parameter information to the Reprogramming

Sequence Manager. After receiving the diagnostic request, the Reprogramming Sequence Manager requests the message processor

to obtain the service identifier and execution event parameter list from the diagnostic request. The service identifier is submitted

to the Programming Step Router, while the parameter list is submitted to the Operation Step Router. The Programming Step Router

retrieves the programming step configurations based on the service identifier, and the Sequence Check Module verifies whether

the prerequisite steps have been executed. Subsequently, the Operation Step Router obtains the list of operation steps associated

with each programming step and the relevant event execution parameters. These are serialized and loaded into the execution

sequence of operation steps. The operation steps within the execution sequence are carried out sequentially, with each step executed

only after the previous one is completed. The operation steps trigger the execution of associated events through the asynchronous

C/S interface, retrieve execution results, and return data. If an event execution fails, the subsequent operation steps will not proceed.

Upon failure in timing verification or after the completion of the execution sequence, execution results and return data are

 Request Message Handler

Rte_Result_<SID>_Ind (OUT *arg3)

Reprogramming Sequence Manager

RE1

Runnable Entity

......

TimingEvent

Events

AsyncCallReturnsEvent

DCM

Memory Manager

Backup Manager

Secur ity Moudle

Rte_Call_<SID>_Ind(IN *arg1)

Programming

Step Table Programming Step

Router

Sequence Check

Service Index

Rte_Call_<p>_<o>

OperationInvokedEvent

Events

TimingEvent

RE1

Runnable Entity

......

Rte_Result_<p>_<o>

Response Message Handler

Return Parameter List

Execution Sequence

Operation 1

Operation 2

...

Operation n

Operation Step

Table

Operation Step

Router

Operation ID List Parameter List

9090	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	2

submitted to the response message processor. The appropriate service Rte_Result function is then invoked to notify DCM of the

execution result of the service request.

4. Testing of the bootloader download feature

In this study, the parameter configuration, code implementation, and functional testing of Requirement A and Requirement B have

been completed. Table 1 presents the differences between the two requirements in terms of logical block erasure, data download,

and verification processes.

Table 1. Differences between requirement A and requirement B

Programming Service Requirement A Requirement B

RoutineControl

(EraseMemory)

Request
31 01 FF00

LogicalBlockIdentifier

31 01 FF00

MemoryAddress

MemorySize

Response
71 01 FF00

EraseResult

71 01 FF00

EraseResult

RequestDownload
Request

34 00 44

MemoryAddress

MemorySize

34 00 44

MemoryAddress

MemorySize

Response 74 01 80 74 02 0400

TransferData

Request

36

BlockSequenceCounter

TransferData(126 bytes)

36

BlockSequenceCounter

TransferData(1022 bytes)

Response
76

BlockSequenceCounter

76

BlockSequenceCounter

RequestTransferExit

Request 37 CRC 37

Response
77 CRC

CheckResult
77

RoutineControl

(CheckMemory)

Request NA
31 01 0202

CRC

Response NA
71 01 0202

CheckResult

These differences include:

1. In the EraseMemory routine, the range of memory to be erased is represented by logical block numbers in Requirement A,

whereas in Requirement B, it is indicated using memory addresses and memory size.

2. In the TransferData services, due to the relatively limited RAM resources of the hardware, the maximum length of returned

data blocks in Requirement A is 128 bytes, while in Requirement B, it is 1024 bytes.

3. When verifying the validity of the downloaded data, Cyclic Redundancy Check (CRC) information is included in the

RequestDownloadExit service of Requirement A, whereas in Requirement B, the routine control service is used to check whether

the CRC is correct.

Figure 5. Timing diagram of internal variables during the download of requirements A

Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	2	|	9191

Figure 6. Timing diagram of internal variables during the download of requirements B

Figure 5 and 6 show the timing diagrams of programming status variables output by the internal test module of the Bootloader

via CAN messages. The rising edge of the red graphic indicates the start of programming, while the falling edge indicates its

completion. The Flash Driver is considered loaded when the green graphic is high. The application is being downloaded when the

blue graphic is low. For Requirement A, the Data Block size is set to 128. The Flash Driver loading, Flash erasure, and other

programming preparation processes take a total of 1.973 seconds. When a data size of 256k bytes is downloaded, a total of 2080.5

(2081) TransferData services are required, resulting in a total duration of 18.980 seconds. For Requirement B, the Data Block size

is set to 1024. The Flash Driver loading, Flash erasure, and other programming preparation processes take a total of 1.545 seconds.

When a data size of 256k bytes is downloaded, a total of 256.5 (257) TransferData services are required, resulting in a total duration

of 10.994 seconds.The data download features for both requirements have been perfectly implemented. It demonstrates that the

software method is applicable to different reprogramming requirements, possesses reusability, and can stably achieve the

reprogramming function.

5. Conclusion

A Bootloader programming management method applicable to different programming standards was designed and implemented

in this study. Through the adoption of a layered architecture and internal RTE interfaces, the programming initiation module and

service execution module were kept independent from the management module. This structural configuration enabled flexible

adaptation of required modifications while maintaining system integrity, thus enhancing software reusability. Verification

processes for two Bootloader configurations with different requirements were successfully completed, demonstrating the

effectiveness of this reusable methodology.

References

[1] Tan, T., Tang, H., & Zhou, Y. (2013). Design and Implementation of Bootloader for Vehicle Control Unit Based on Can Bus.

Proceedings of the FISITA 2012 World Automotive Congress, 194, 447-457. https://doi.org/10.1007/978-3-642-33829-8_42

[2] Luo, F., & Xie, Y. Y. (2016). LIN Flash Bootloader Based on UDS. Journal of Automation and Control Engineering, 4(1), 47-52.

[3] Wu, Y., Wen, K., & Liang, X. (2017). Design and Implementation of Bootloader Based on CCP Protocol. 2017 10th International

Conference on Intelligent Computation Technology and Automation (ICICTA), 140-143. https://doi.org/10.1109/ICICTA.2017.38

[4] Cheng, A., Xiong, L., Xie, M., & Li, Y. (2016). Design and Implementation of Online Upgrade Software for Vehicle ECU Based on HIS

Standard. International Journal of Science, 3(1), 98-105.

[5] Bunzel, S. (2011). AUTOSAR-the Standardized Software Architecture. Informatik-Spektrum, 34(1), 79-83.

https://doi.org/10.1007/s00287-010-0506-7

[6] Long, R., Li, H., Peng, W., Zhang, Y., & Zhao, M. (2009). An Approach to Optimize Intra-ECU Communication Based on Mapping of

AUTOSAR Runnable Entities. In 2009 International Conference on Embedded Software and Systems, 138-143.

https://doi.org/10.1109/ICESS.2009.63

