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Abstract. In intelligent warehousing and transportation processes, the centralization of material units significantly enhances 

storage and handling efficiency. Among these, the centralized unitization of material pallets is in high demand and widely applied 

in practical operations. In multi-SKU scenarios, achieving efficient palletizing—particularly online mixed palletizing—poses a 

major challenge in logistics operations. This process aims to save manpower while ensuring operational efficiency. To address 

this issue, this paper presents a combined heuristic algorithm that integrates an anthropomorphic heuristic algorithm with a greedy 

algorithm incorporating local perturbations. The proposed approach accounts for constraints such as mass, volume, center of 

gravity, non-overlapping placement, and stability. Experimental results demonstrate that this algorithm effectively resolves the 

palletizing challenges for multi-SKU goods, significantly reducing space waste. 
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1. Introduction 

The rise of modern e-commerce and intelligent manufacturing has driven the rapid development of the logistics industry, where 

palletizing plays a crucial role. In multi-SKU scenarios, achieving more efficient mixed palletizing with less manual labor and 

maximizing space utilization has become an urgent issue to address. The essence of palletizing lies in the three-dimensional 

packing problem, a type of combinatorial optimization problem [1]. As the name suggests, combinatorial optimization involves 

finding the optimal solution to an objective function within a defined mathematical structure and under specified constraints. 

Currently, one-dimensional and two-dimensional packing problems are relatively simple and thus well-studied. However, three-

dimensional packing is more complex and challenging, with limited research progress. Large-scale three-dimensional packing 

problems cannot achieve precise optimal solutions and rely on various algorithms to obtain approximate solutions [2]. The primary 

methods include mathematical programming, heuristic algorithms, and hybrid approaches. 

Mathematical programming is often used in small-scale packing scenarios. Common models in mathematical programming 

include 0-1 integer programming, mixed-integer programming, and linear programming models [3]. Fekete et al. [4] proposed a 

dual-tree search algorithm to solve high-dimensional packing problems, but it guarantees optimal solutions only when the number 

of items is fewer than 20. Similarly, Martello et al. [5] used a branch-and-bound method to solve the single knapsack problem, but 

this approach could only handle the optimization of up to 20 items within given time and position constraints. Heuristic algorithms 

are often designed based on manual packing experience. Liu et al. [6] combined tree search sub-algorithms and greedy sub-

algorithms to optimize pallet loading problems. Koide et al. [7] integrated genetic algorithms, traditional Chinese truss search 

algorithms, and heuristic methods for packing problems and developed container loading algorithms. However, a significant 

limitation of these algorithms is that they only yield local optimal or approximate solutions. Hybrid algorithms, which combine 

two or more algorithms to leverage their combined strengths, have gained attention. Zhang Changyong et al. [8] constructed a 

cargo loading strategy using an anthropomorphic heuristic algorithm and then optimized the solution through crossover and 

mutation operations in genetic algorithms. Zhang Defu et al. [9] combined anthropomorphic heuristic algorithms with simulated 

annealing to optimize three-dimensional packing problems. These algorithms often use heuristic algorithms for global layout 

planning, followed by meta-heuristic or mathematical programming methods for local optimization [8]. 

In summary, using hybrid algorithms for online palletizing planning, combining anthropomorphic heuristic algorithms with 

greedy algorithms, can enhance global search capabilities. Therefore, this paper adopts a hybrid algorithm: an anthropomorphic 
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algorithm determines the loading positions, while a greedy algorithm optimizes the palletizing sequence. Additionally, a shifting 

operation is introduced to address gaps caused by placing small items before large ones, which may result in overhanging spaces. 

2. Problem Description 

This study focuses on the online mixed palletizing strategy for multi-SKU scenarios. In this context, the robotic system can only 

access the dimensions of certain boxes on the conveyor belt to conduct global optimal planning. Box information is sequentially 

identified from the conveyor belt and transmitted via camera to the online mixed palletizing algorithm, which then generates 

placement information. Compared to offline palletizing, online palletizing is well-suited for conveyor-line working conditions 

where box information is limited. It generates relatively optimal palletizing layouts within constrained timeframes, based on actual 

constraints. 

In the logistics conveyor-line working conditions, robots handle the online palletizing of cartons for multi-SKU scenarios. The 

pallet is modeled as a rectangular container with a height H, length L, and width W. Essentially, the carton palletizing problem is 

a three-dimensional packing problem. The objective is to determine the layout that maximizes pallet space utilization while 

considering practical constraints for carton loading. 

2.1. Constraints 

In actual palletizing, numerous real-world factors introduce multiple constraints. On one hand, constraints are essential for 

establishing a robust optimization model. On the other hand, realistic constraints are necessary for practical engineering 

applications. Based on field research and analysis, the following constraints are considered: 

(1) Mass Constraint: The total mass of goods must not exceed the pallet's maximum load capacity. 

(2) Volume Constraint: The total volume of goods must not exceed the pallet's maximum loadable volume. 

(3) Center of Gravity Constraint: To ensure the stability of the palletized stack, the center of gravity must remain within a 

reasonable range. 

(4) Non-overlapping Constraint: No two boxes may share any overlapping points in space. 

(5) Stability Constraint: Boxes cannot be placed in a suspended manner. Each box must be supported either by other goods 

below it or by the base of the container. Additionally, boxes must be aligned parallel to the container, with their edges parallel to 

the corresponding edges of the container. 

2.2. Assumptions 

Due to the complexity of box stacking in actual palletizing processes, the following assumptions are made to facilitate research: 

(1) Boxes can be stacked vertically. 

(2) Boxes must be fully contained within the container. 

(3) The mass of each box is uniformly distributed, with the geometric center as the center of mass. 

(4) Boxes are not subject to deformation due to compression. 

(5) All boxes are rectangular. 

3. Mathematical Model 

3.1. Notation 

V: Volume of the container. 

n: Number of boxes. 

𝑠𝑖: Volume of the i-th box. 

𝜂: Pallet utilization rate. 

L,W,H: Length, width, and height of the pallet, respectively. 

li, wi, hi: Length, width, and height of the i-th box. 

lj, wj, hj: Length, width, and height of the j-th box, where 𝑉 = 𝐿𝑊𝐻,𝑣𝑖 = 𝑙𝑖𝑤𝑖ℎ𝑖 
Pi: Palletizing sequence of the i-th box. 

Qi: Order number of the i-th box. 

𝛼𝑖: Indicates whether the i-th box is placed on the pallet (𝛼𝑖 = 1) or not (𝛼𝑖 = 0). 

mi: Weight of the i-th box. 

M: Maximum load capacity of the pallet. 

[𝐺𝑥1 , 𝐺𝑥2], [𝐺𝑦1 , 𝐺𝑦2], [𝐺𝑧1 , 𝐺𝑧2]: Safety ranges of the center of gravity on the X, Y, and Z axes, respectively. 

(𝑔𝑥𝑖 , 𝑔𝑦𝑖 , 𝑔𝑧𝑖): Coordinates of the center of gravity for the i-th box. 
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(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗): Coordinates of the bottom-left corner of the i-th and j-th boxes, respectively. 

𝜎𝑖𝑗
𝑑 ∈ {0,1}: Indicates whether boxes I and j are separated in the d-th dimension (d=1 for the X-axis, d=2 for the Y-axis, and 

d=3 for the Z-axis). 

M: A sufficiently large positive number. 

3.2. Box Placement Rules 

3.2.1. Placement Orientation 

The orientation of boxes significantly affects the final palletizing result. Assuming all boxes are rectangular, there are six possible 

orientations under the given constraints. Common descriptions of object orientations in daily life, such as "upright," "horizontal," 

"flat," or "vertical," are vague. In algorithmic applications, these six orientations must be explicitly defined. A box’s orientation is 

determined by its alignment along three spatial dimensions: front-back, left-right, and top-bottom. A rectangular box has six faces, 

which can be grouped into three types based on dimensions. These three faces correspond to 𝐴3
3 = 6 possible configurations, as 

illustrated in Figure 1. 

 

Figure 1. Diagram of Box Placement Orientations 

The data structures in this study are designed based on a three-dimensional coordinate system. A fundamental data structure is 

a coordinate point, consisting of three ordered integers representing the projections of a point on the X, Y, and Z axes, denoted 

as(𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧). Both boxes and pallets are rectangular, with their length, width, and height defined as edges parallel to the X, Y, 

and Z axes. 

3.2.2. Container and Box Definition Rules 

The container’s dimensions are represented by three ordered integers: (L,W,H). As shown in Figure 2, the bottom-left corner of 

the container, viewed from the top-down perspective, is set as the origin (0,0,0). 
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Figure 2. Diagram of Pallet Coordinates 

In addition to basic positional and dimensional information, the container must store details about the boxes inside it. Box 

information is represented by an ordered list, which allows adding, removing, and querying operations. Since box orientations are 

variable, identical boxes may have different representations, as their dimensions (l,w,h) are dynamic. To ensure consistency, a 

box’s dimensions are expressed using an unordered set: {l,w,h}. This approach avoids storing individual length, width, and height 

values, instead using a dimension set and placement flag. The placement flag has a value range of {0,1,2,3,4,5}, corresponding to 

the six orientations. 

Similarly, the position of a box in space is determined by its bottom-left corner, viewed from the top-down perspective. The 

position of the i-th box is denoted as (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). Relevant information is illustrated in Figure 3. 

 

Figure 3. Diagram of Box Coordinates 

3.3. Model Formulation 

Based on the assumptions, constraints, and palletizing problem description, the online mixed palletizing model is formulated as 

follows: 

Objective Function: Maximize pallet space utilization: 

 𝜂 = 𝑚𝑎𝑥
∑ 𝑣𝑖
𝑛
𝑖=1

𝑉
 (1) 

Constraints: 

 ∑ 𝛼𝑖𝑚𝑖
𝑛
𝑖=1 ≤ 𝑀 (2) 
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 0 ≤ 𝑙𝑖 ≤ 𝐿, 0 ≤ 𝑤𝑖 ≤ 𝑊, 0 ≤ ℎ𝑖 ≤ 𝐻 (3) 

 0 ≤ 𝑣𝑖 ≤ 𝑉 (4) 

 

{
 
 

 
 𝐺𝑥1 ≤

∑ 𝛼𝑖𝑚𝑖𝑔𝑥𝑖
𝑛
𝑖=1

∑ 𝛼𝑖𝑚𝑖
𝑛
𝑖=1

≤ 𝐺𝑥2

𝐺𝑦1 ≤
∑ 𝛼𝑖𝑚𝑖𝑔𝑦𝑖
𝑛
𝑖=1

∑ 𝛼𝑖𝑚𝑖
𝑛
𝑖=1

≤ 𝐺𝑦2

𝐺𝑧1 ≤
∑ 𝛼𝑖𝑚𝑖𝑔𝑧𝑖
𝑛
𝑖=1

∑ 𝛼𝑖𝑚𝑖
𝑛
𝑖=1

≤ 𝐺𝑧2

 (5) 

 

{
 
 
 
 

 
 
 
 
𝜎𝑖𝑗
1 + 𝜎𝑖𝑗

2 + 𝜎𝑖𝑗
3 ≥ 1, ∀𝑖 ≠ 𝑗

𝑥𝑖 + 𝑙𝑖 ≤ 𝑥𝑗 +𝑀(1 − 𝜎𝑖𝑗
1 )

𝑥𝑗 + 𝑙𝑗 ≤ 𝑥𝑖 +𝑀𝜎𝑖𝑗
1

𝑦𝑖 +𝑤𝑖 ≤ 𝑦𝑖 +𝑀(1 − 𝜎𝑖𝑗
2)

𝑦𝑗 + 𝑤𝑗 ≤ 𝑦𝑖 +𝑀𝜎𝑖𝑗
2

𝑧𝑖 + ℎ𝑖 ≤ 𝑧𝑗 +𝑀(1 − 𝜎𝑖𝑗
3)

𝑧𝑗 + ℎ𝑗 ≤ 𝑧𝑖 +𝑀𝜎𝑖𝑗
3

 (6) 

 {

𝑂𝑖𝑗 = 𝑂𝑥 ∙ 𝑂𝑦 > 0

𝑂𝑥 = max⁡(0,min(𝑥𝑖 + 𝑙𝑖 , 𝑥𝑗 + 𝑙𝑗) − max(𝑥𝑖 , 𝑥𝑗))

𝑂𝑦 = max⁡(0,min(𝑦𝑖 +𝑤𝑖 , 𝑦𝑗 +𝑤𝑗) − max(𝑦𝑖 , 𝑦𝑗))

 (7) 

In the abwkove, Equation (1) is the optimization objective to maximize pallet space utilization. Equations (2)-(5) represent the 

mass, volume, and center of gravity constraints. Equation (6) ensures non-overlapping placement of boxes. Equation (7) is the 

stability constraint, based on the overlap area between boxes. 

4. Algorithm Design 

4.1. Anthropomorphic Heuristic Algorithm 

For addressing the multi-SKU palletizing problem, an anthropomorphic heuristic algorithm is adopted. This method involves 

constructing placement points, defining rules, sorting, and introducing reference planes for loading. Its advantage lies in the fact 

that it imposes no structural requirements on the goods. This algorithm is inspired by real-life wall-building techniques: when 

building a wall, a reference brick is placed first, serving as a baseline. The height of other objects is constrained by the reference 

brick until no more objects can be placed, at which point the height of the reference brick is adjusted. 

Drawing on this concept, in the three-dimensional packing process, reference bricks are introduced in both horizontal and 

vertical directions to guide the loading process. This paper records placement points to identify feasible loading positions and 

introduces horizontal and vertical reference planes to guide the stacking process. 

4.1.1. Placement Points 

Placement points refer to points within the container that can serve as references for placing goods. The placement point table 

stores these points in an ordered list within the container’s data structure. As shown in Figure 4, placement points are indicated by 

bold dots. 
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Figure 4. Diagram of Placement Points 

Placement points must meet the constraints outlined earlier; if not, they cannot be used for placement. Initially, the pallet 

contains only one placement point, the origin. After placing box i, three new placement points are generated: (𝑥𝑖 + 𝑙𝑖 , 𝑦𝑖 , 𝑧𝑖)､

(𝑥𝑖 , 𝑦𝑖 +𝑤𝑖 , 𝑧𝑖)､(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 + ℎ𝑖). The placement point table must remain ordered, which is achieved by assigning weights. The 

ordering is determined as follows: 

• Points are sorted first by the y-coordinate in ascending order. 

• If y-coordinates are equal, the x-coordinate is used in ascending order. 

• If both x- and y-coordinates are equal, the z-coordinate is used in ascending order. 

This sorting rule can be formalized as a weight definition or comparison logic: 

 𝑊𝑒𝑖𝑔ℎ𝑡(𝑃𝑘) = 𝑦𝑘 ∙ 𝐿
2 + 𝑥𝑘 ∙ 𝐿 + 𝑧𝑘 (8) 

Where 𝑃𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) represents the coordinates of the k-th placement point, and 𝑊𝑒𝑖𝑔ℎ𝑡(𝑃𝑘)⁡is its weight for sorting. L 

is a sufficiently large positive number to represent the priority relationships between coordinates, with 𝐿 ≫ 𝑚𝑎𝑥(𝑥, 𝑦, 𝑧). 

4.1.2. Reference Planes 

The pallet is treated as a three-dimensional container space, and two reference planes are used to decompose the palletizing 

problem into a single dimension. Assume the planes Ph and Pv, parallel to the XY and ZY axes, respectively, as shown in Figure 

5. During palletizing, in addition to satisfying the aforementioned constraints, goods must not exceed these two reference planes. 

When choosing placement points, the order of selection should prioritize the y-direction, followed by the x- and z-directions. This 

constraint aligns with the sorting of the placement point table. Initially, both reference plane values are set to 0. If a box fails to 

meet the constraints during palletizing, the reference planes must be adjusted. If the constraints still cannot be met, the box cannot 

be placed on the pallet. 

 

Figure 5. Diagram of Reference Planes 

When using reference planes to assist palletizing, scenarios often arise where smaller boxes are placed before larger boxes, 

leaving gaps due to the smaller boxes not being aligned to edges. This results in suspended placements. To address this, a shifting 
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operation is defined: the principle is to align the boxes to edges as much as possible. Following the priority rules outlined earlier, 

boxes are moved first in the y-direction, followed by the x- and z-directions, provided the constraints and assumptions are satisfied. 

4.2. Combined Algorithm 

A combination of the anthropomorphic heuristic algorithm and a greedy algorithm is proposed. To avoid failures caused by local 

optima, a local random perturbation is introduced into the greedy algorithm. In this design, the anthropomorphic algorithm 

determines the loading positions, while the greedy algorithm decides the loading sequence. 

The greedy algorithm iteratively searches for the optimal decision until convergence [10]. First, the remaining pallet space is 

calculated, and the loading state is initialized. The priorities of goods are then calculated. This paper assigns weights to volume, 

weight, and center of gravity to compute the loading sequence. The priority calculation formula is: 

 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 0.3 ⋅ 𝑚 + 0.5 ⋅ 𝑣 + 0.2 ⋅ 𝑔 (9) 

Where m is the weight, v is the volume, and g is the center of gravity of the box. 

Since the greedy algorithm employs a single selection rule, it is prone to falling into local optima. To address this, a random 

perturbation is introduced to the priority calculation, enhancing the algorithm's adaptability. The perturbed priority formula is: 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 = 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 + ∆𝑃 

∆𝑃 = 𝛼 ⋅ 𝑟𝑎𝑛𝑑𝑜𝑚(−1,1) 

Where ΔP is the random perturbation term, and α is the coefficient controlling the intensity of the perturbation. Random (−1,1) 

generates a uniformly distributed random number to disrupt strict ordering. 

5. Simulation Results and Visualization 

The algorithm was implemented using Python, and the selected datasets were randomly generated. The datasets contained a total 

of 360 boxes, with the number of box specifications set at 6, 10, 12, 15, 20, and 30, respectively. The dimensions of the pallet used 

for testing were (1000,1200,1100) mm. The simulation results are shown in Table 1. 

Table 1. Dataset Simulation Results 

Test Number Number of Specifications Space Utilization Rate 

1 6 82.5% 

2 10 85.4% 

3 12 87.7% 

4 15 89.7% 

5 20 90.2% 

6 30 91.9% 

The palletizing results for these six scenarios were visualized, as shown in Figure 6. 
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(a) 6 Specifications                           (b) 10 Specifications 

 
(c) 12 Specifications                          (d) 15 Specifications 

 
(e) 20 Specifications                           (f) 30 Specifications 

Figure 6. Visualization of Palletizing Results 

6. Conclusion 

This paper addresses the problem of mixed palletizing in logistics scenarios. By establishing assumptions and constraints, the 

palletizing problem is transformed into a three-dimensional packing problem. A combined algorithm integrating an 

anthropomorphic heuristic algorithm and a greedy algorithm with local perturbations was introduced. The algorithm was 

implemented using Python and tested on six datasets with varying specifications. The experimental results demonstrate that the 

combined algorithm performs well and exhibits good stability in handling scenarios with multiple specifications. As the number 

of specifications increases, space utilization improves. For datasets with 30 specifications, the space utilization rate reached 91.9%. 

This indicates that the algorithm adapts effectively to palletizing scenarios involving a high degree of heterogeneity and ensures 

robust palletizing performance for diverse cargo types. In practical applications, this algorithm can save space in logistics 

warehousing and transportation, improve space utilization, and reduce operational costs. 
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