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Abstract. Linking records is essential in data integration, healthcare analysis, fraud detection, and other applications where 

matching across datasets is needed. But actual data is usually noisy (lost values, typos, inconsistent formatting), and these factors 

greatly sour the performance of deterministic and probabilistic approaches. In this paper, we introduce a deep learning model and 

high-level regularizations (dropout, weight decay, early stopping) to enhance robustness for noisy record linkage. We test the 

approaches by using open data, that are simulated scenarios of real world with different levels of noise. Data augmentation 

generates fake noise (realistic input errors). Results reveal that regularization techniques improve the model’s performance under 

noisy environments with up to 20% better accuracy and recall than unregularized models. Dropout specifically tended to generalise 

better by limiting overfitting to noise. These results reveal the potential of deep learning and regularization to address record 

linkage problems in noisy environments, and suggest future work on additional techniques including adversarial training and batch 

normalization.  
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1. Introduction 

Record linkage involves comparing and finding records between datasets for the same entity, such as people, companies or 
transactions. It serves as a bedrock in such applications as data integration, healthcare and financial fraud detection, where the 

aggregated analysis of large-scale, disparate datasets becomes necessary. For decades, conventional methods of record linking – 

deterministic and probabilistic matching, for example – have been widely adopted. Deterministic matching involves exact rules, 

such as string matches between names, birth dates, or addresses. Probabilistic matching, by contrast, computes likelihood using 

statistical models, with small data fields. These classical approaches work well for clean, well-structured data but are dramatically 

poor when applied to real-world noisy data. Inconsistent data — data with values missing, typos, and formats that are irregular — 

is a problem for record linking mechanisms. The most subtle of inconsistencies – like a spelling error for a name or a different 

format for the date – can lead to false negatives (missed matches) or false positives (wrong matches) and can compromise the 

integrity of the system. To overcome this problem, you need techniques that can generalize to noisy inputs while still retaining 

high accuracy and robustness [1]. Recently emerging deep learning approaches offer promising ways to solve these issues. Deep 

Learning models, unlike the traditional approach, automatically learns intricate patterns and relations in the data without feature 

engineering. But such models are easy to overfit when slapped with noisy data as it can learn false patterns instead of structure. 

Dropout, weight decay, early stopping, regularizations: are all useful regularizations that reduce the risk of overfitting and improve 

generalisability. These techniques force the model to prioritize relevant features and suppress noise, which leads to robust 

performance in all datasets of different quality. This article tries to overcome the weakness of the classical record linkage methods 

in noisy environments by introducing a deep learning system with regularization mechanisms. We test the model against publicly 

available datasets by adding data augmentation with controlled noise to simulate real-world events. We compare various 
regularization techniques, in an orderly way, and show how they affect model quality, precision and recall. 
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2. Literature review   

2.1. Old-fashioned records linkage approaches  

Classic record linking approaches generally use deterministic or probabilistic matching. Deterministic matching uses an explicit 

set of rules to compare records, such as exact string matches for a person’s name, date of birth or address. Figure 1: For instance, 
records of two partners (OneFlorida Partner A and B) are matched deterministically with a one-way hash using names, dates of 

birth, and demographics. Even if there are slight differences in the format of the data (i.e., "John, Doe" instead of "DOE, JOHN"), 

the deterministic matcher makes sure the records are linked together by returning the same hash values. Probabilistic matching, by 

contrast, computes a statistical model to determine a match’s likelihood and is sensitive to data variability and change. 

Deterministic algorithms, as depicted in Figure 1, do well with well-structured, clean data, but when noise (spelling or partial 

values) creeps in, they won’t work [2]. This means that even the slightest difference between data fields can lead to false negatives 

or misses thereby rendering the method less reliable in noisy real world data.  

 

Figure 1. A deterministic record linkage process. 

2.2. Noise effect on record linkage quality  

Noise (missing information, inconsistency or typographical error) degrades the efficiency of old-fashioned record-linking 

techniques. Research has demonstrated that the higher the noise, the more error-prone the matching becomes and the more false 

positives and false negatives there are. Noise is used to blur the matching process and impede the ability of algorithms to find 

matching records correctly. Furthermore, the process of noisy data processing in record linkage often calls for extensive pre-

processing such as fuzzy matching or imputation to return the missing or inaccurate data. Nevertheless, even these attempts fail to 

achieve the accuracy they need when the environment is noisy [3].  

2.3. Deep learning in record linkage and regularization  

New developments in deep learning have allowed for new possibilities for optimizing record linkage even under noisy data. Deep 

learning architectures like neural networks can infer deep patterns from data without having to explicitly feature engineer them, 
which makes them more scalable and adaptable than traditional approaches. These models have proved superior to traditional 

methods, particularly in the case of large-scale data sets with noisy or heterogenous values. But deep learning models aren’t 

impervious to overfitting – especially when analyzing noisy or partial data [4]. Overfitting happens when the model becomes too 

complex, learning the noise in the training data rather than patterns. Dropout, weight decay, early stopping, and other 

regularizations can be used to avoid overfitting and generalize the deep learning model. Regularization allows the model to target 

features relevant to it, filtering out noise of no value and allowing the model to work on diverse datasets with different levels of 

noise [5]. 

3. Experimental methods   

3.1. Dataset description   

We decided to pull a few public datasets of actual record linking workloads to ensure a complete test of the model's robustness. 
These datasets are of varying complexity, size and noise level, reflecting various real-world usages. One dataset, for example, has 

patient records imported from healthcare networks, in which spelling, missing values and non-standard formats are common in 

names, addresses, and birth dates [6]. Another dataset would be customer transaction data from an e-commerce store, where noise 

could come from typos, product descriptions or incomplete entries. For testing purposes, we added artificial noise in various 

amounts to the datasets. The noise simulation consisted of randomly deleting field values, adding typos (e.g., letter transpositions 
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or deletions) and inconsistently formatting categorical data. So we started by constantly changing the noise so that we made several 

different versions of each dataset and then evaluated how the model would perform in various conditions. Even the data were 

different in structure — there were names, addresses, contact information and numbers — so that the experiments tested the model 

across a variety of data sets [7].  

3.2. Model design and regularization techniques  

This record linkage task was solved using deep learning involving multiple hidden layers. Each layer used ReLU activation 

functions to create non-linearity, allowing the network to record complicated relations among records. The model was given paired 

records as input and returned a similarity score that calculated whether or not the records refer to the same person. In order to make 

the model stronger under noisy conditions, we used and tested various regularization methods. Firstly, dropout was used to 

randomly turn off neurons in training, which forced the model to generalise by remembering multiple features rather than noise. 

In second we used weight decay (L2 regularization), a technique that penalizes big weight values, thus forcing the model to learn 

simpler, noise-tolerant patterns. This method avoids overfitting, ensuring that the model is still effective when tested against 

invisible data of similar noise. Finally, early stopping in training was introduced, stopping when validation performance began to 

slip, thereby preventing overfitting against noisy training. In order to determine further the correlation between noise and model 
performance, we used regression analysis [8]. The analysis looked at how differences in noise impacted accuracy, precision, and 

recall. In an effort to rationalize these regularization methods, we looked at their independent and combined effects on boosting 

the model’s robustness to noise, and gave some estimates of their contribution.  

3.3. Evaluation metrics   

In order to test the performance of our record linkage model, we used standard metrics for accuracy and robustness under noise. 

Precision measured the percentage of correct matches versus all the predicted matches and demonstrated how well the model 

prevents false positives. Additionally, recall also measured how many correct matches out of all actual matches were correctly 

identified — this is an indication of how well the model prevented false negatives. The F1-score, the harmonic mean of precision 

and recall, offered a sensible index of model performance with both false positives and false negatives removed [9]. In order to 

measure robustness to noise specifically, we monitored model performance over the various noise levels of the datasets. By slowly 

introducing noise, and measuring how precision, recall and F1-score dropped off, we had a sense of the model’s resilience in the 

real world. With this test strategy, we could see whether or not the standardised regularization techniques reduced noise’s damaging 

impact on record linkage precision. 

4. Experimental process   

4.1. Preprocessing and data augmentation   

Prior to passing the data to the model, we performed a few preprocessing steps to prep the noisy data for training. Incorrect values 

were removed by using data type-specific imputation methods (for example, mean imputation of number fields (eg, age, income), 

and most frequent value imputation for categories (names, product categories). For example, in the healthcare dataset, there were 

approximately 12.5% missing values, whereas the e-commerce dataset had 8.3% missing values (refer to Table 1 for detailed 

preprocessing data). Data augmentation techniques were implemented to further generalize the model and reproduce the real noise 

[10]. Augmentation involved forming artificial representations of the records by messing with numbers (for instance, by adding 

little random noise) and slightly changing textual data fields by adding controlled typos or replacing words. Names such as "John 

Doe" were changed to "Jon Doe" or "John D." And minor variations in dates and addresses were introduced to evoke human input 

faults. This method increased the size and variety of the training set and thereby trained the model with strong representations.  

Table 1. Preprocessing Statistics for Datasets 

Dataset Total Records Missing Values (%) Imputation Method 

Healthcare Records 50,000 12.5 Mean/Numeric, Most Frequent/Categorical 

E-commerce Records 75,000 8.3 Mean/Numeric, Most Frequent/Categorical 

4.2. Implementation of regularization techniques   

We used three regularization methods, dropout, weight decay, and early stopping, to improve the robustness and avoid overfitting 

in model training. Dropout was 0.5, which randomly activated 50% of neurons across each layer to minimise the dependence on 

specific features and increase generalization. The weight decay (L2 regularization) at 0.01 penalised the heavy weights, so the 
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model was able to learn more simple, noise-free patterns. Further, pre-stopped at 10 epochs was used to stop training after 

validation hit a dead end and avoid overfitting to noisy data. These techniques together smoothed out the training so that the model 

performed optimally and robustly even with different noise levels [11].  

4.3. Training steps and hyperparameter adjustment  

The model was trained using Adam optimizer with an initial learning rate of 0.001. Batches were limited to 32 records, and the 

number of epochs was limited to 100. To achieve peak performance, grid search was used to continuously adjust hyperparameters 

like learning rate, dropout rate and weight decay strength. As presented in Table 2, the set LR=0.001, Dropout=0.5 and WD=0.01 

had the highest F1-Score of 0.86, accuracy is 0.88, and recall is 0.84. In tuning, we found that a higher level of dropout and weight 

decay improved the generalisability of the model under noisy conditions while extremely high regularization values only reduced 

recall slightly. The training process also included cross-validation to validate model performance on all splits of data to ensure it 

was not biased to any specific subset [12]. The final model, with optimized hyperparameters and regularization algorithms, proved 

robust to all noise, demonstrating its usability in actual record linking operations. 

Table 2. Hyperparameter Tuning Results 

Hyperparameter Set Precision Recall F1-Score 

LR=0.001, Dropout=0.5, WD=0.01 0.88 0.84 0.86 

LR=0.0005, Dropout=0.3, WD=0.005 0.86 0.83 0.84 

LR=0.001, Dropout=0.4, WD=0.01 0.87 0.85 0.86 

5. Results and discussion  

5.1. Performance analysis of regularization approaches  

The results revealed that regularization strategies significantly improved the performance of the record linkage model in noisy 

conditions. Both dropout and weight decay prevented overfitting, but dropout tended to gain greater robustness. Dropout models 

were 20% more accurate in predicting accuracy and recall than models without regularization when noise was low (e.g., 10 per 

cent missing values or typos).  

5.2. Robustness models for noisy situations  

Our research confirmed that regularization-based models were better than their unregularized counterparts, particularly when the 

noise got bigger. For instance, given random missing values and typographical errors, the regularized models were more accurate 

and remembered. The dropout technique was especially good at ensuring that the model didn’t converge on false correlations 
based on noise.  

5.3. Implications and future directions   

These findings imply that regularisation of deep learning models for record linkage can significantly improve their robustness in 

noisy environments. Possibly, future studies could use more regularization techniques (such as batch normalization or adversarial 

training) to make models perform even better. In addition, testing the same methods on other types of noisy data, such as 

unformatted text or images, might give us more clues as to how generalizable they can be. 

6. Conclusion 

The result reveals the power of deep learning models with regularization strategies to enhance robustness for noisy record linkage 

tasks. Deterministic and probabilistic approaches are well-suited for datasets that are neatly arranged but don’t account for the 

wiggle room and irregularities in the actual dataset. Using regularization features like dropout, weight decay, and early stopping, 

our dubbed deep learning strategy performs extremely well, keeping the precision, recall, and F1-scores very high despite increased 

noise. Dropout, specifically, helped with overfitting and generalisation, as well as allowing the model to handle varying levels of 

noise. What we have demonstrated is that deep learning with selective regularization is capable of overcoming classical record 

linkage challenges and operating effectively in the most challenging environments. Future work may try to implement additional 

strategies like adversarial training, batch normalization or ensemble model to increase robustness. If you apply this method to 

other types of data, like raw text or image datasets, it may also give you a hint on how the methods could be scaled and generalized. 
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All in all, this research will help us develop more accurate record linkage mechanisms that can be used to solve real-world data 

quality and variability issues. 
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