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Abstract. Machine learning always requires a large amount of labeled data, and the test data may have a different distribution than 

the training data. Transfer learning has proven to be an essential method for solving this problem in many fields. However, 

achieving successful transfer in graph datasets remains challenging, as the pre-training datasets must be large enough and carefully 

selected. This research looks at the inherent challenges of data scarcity and the need for robust models to increase the versatility 

and efficiency of Graph neural networks (GNNs)in various implementation domains. By examining the performance between 

trained GNNs and non-pre-trained GNNs, which can further demonstrate the generalization of the pre-trained GNN strategy and 

the significance of transfer learning to graph data. 
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1. Introduction  

Graph neural networks (GNNs) [1, 2] attract a lot of attention in representation learning for graph structured data. Transfer learning 

has become a cornerstone of machine learning advances, especially in optimizing GNNs that specialize in processing graph-

structured data [3]. This technology reuses a model customized for one task as the basis for another, effectively solving the 

challenge of data scarcity and enhancing model performance. Academic research has confirmed that transfer learning can 

significantly improve the efficacy of GNNs in various tasks [4,5], including but not limited to node and graph classification. This 

study aims to delve into the application of transfer learning in GNNs to determine its impact on model performance, especially 

when adapted to novel but relevant datasets [1,6]. The initiative is inspired by the precedent success of transfer learning in different 

scientific fields, which shows its potential to make GNNs more computationally efficient and versatile in various scenarios. 

1.1. Challenges 

Leveraging transfer learning to enhance the efficacy of GNNs presents a subtle set of challenges [4]. The most important is the 

risk of negative transfer, an adverse outcome in which a GNN exhibits performance degradation on a new task due to differences 

between the new task data and the data on which the model was initially trained [1,7]. This inconsistency can cause the transferred 

knowledge to backfire and hinder the task. To establish a robust transfer learning framework in GNN, the following key challenges 

must be solved: first, the occurrence of negative transfer must be reduced [5]; second, the relevance and applicability of the 

transferred knowledge must be ensured, especially when the task data is different from the training data. Third, there is an 

obligation to maintain the integrity and validity of the transfer learning process in the context of GNN. In summary, these 

challenges form the key to refining the transfer learning paradigm to realize its full potential to benefit GNN applications. 

1.2. Contributions 

To summarize, this work makes the following major contributions: This research is critical to advancing the field of GNN through 

transfer learning methods. The first contribution is a systematic and extensive exploration of GNN pre-training strategies. The 

basis for this exploration was the creation of two large-scale, domain-specific pre-training corpora: a chemistry domain dataset 

containing two million figures and a biology domain dataset containing 395,000 figures [1,2,3]. Such a broad dataset is expected 

to yield important insights into the impact of domain-specific data volume on the effectiveness of GNN pre-training. The second 
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contribution entails formulating and empirically validating a novel pre-training strategy carefully designed to optimize GNNs for 

enhanced generalization in out-of-distribution environments [2,4]. This is of particular importance in complex transfer learning 

scenarios, where flexibility and adaptability across different tasks are crucial. Collectively, these contributions are expected to 

profoundly impact GNNs’ generalizability, facilitate their application in a wide range of tasks, and potentially facilitate 

breakthroughs in how GNNs can adapt and perform in a variety of transfer learning environments. 

2. Related work 

In recent years, transfer learning has become an important method to enhance the capabilities of GNN, which perform well in 

processing graph-structured data. Well-known studies demonstrate the success of this approach. For example, Koo Verjee et al. 

demonstrated significant improvements in node and graph classification tasks across various datasets, highlighting the adaptability 

of transfer learning to different data types. Han et al. proposed an innovative adaptive transfer learning paradigm that leverages 

self-supervised tasks to refine graph representations, thus extending the practical applications of GNNs. Likewise, recent 

contributions have expanded the field of transfer learning into new areas. The work of Mari et al. explored the integration of 

transfer learning with hybrid classical-quantum neural networks, opening up new possibilities for high-resolution image 

classification. Another study by Levie et al. studied the transferability of spectral graph convolutional networks, providing insights 

into the efficient transfer of spectral filters on different graphs. Building on these foundational works, this article introduces two 

additional vital contributions to the recent literature. The study by Yang et al. introduced PTGB, a pretraining framework designed 

for GNNs targeting brain network analysis, which addresses the scarcity of labeled data in the field by leveraging unsupervised 

pretraining techniques tailored to the field’s unique needs. Another contribution by Wu et al. proposed a comprehensive strategy 

to retrain GNNs across more diverse graph domains and evaluate the effectiveness of these pre-trained models under various 

conditions to gain a broader understanding of the impact of pretraining strategies on GNN generalization capabilities. Collectively, 

these studies highlight the growing importance of transfer learning in improving the efficiency and scope of graph-based data 

analysis and highlight ongoing challenges, such as negative transfer when source and target datasets differ. 

3. Methods 

Our project can be divided into two parts: the first part is a replication study of the previous paper[2, 8] which proposed two node-

level pre-training strategies and a graph-level pre-training strategy and combined them together to give the best pre-training 

strategy on graph neural networks; the second part is to evaluate if the pre-training strategy it proposed can be generalized to 

broader domains, since this previous work only tested it on biology and chemistry domain. By evaluating the pre-training strategy 

on broader domains, we can prove the generalization and robustness of the pre-training strategy and the overall knowledge transfer 

from the source domain to the target domain in graph neural networks. 

 

Figure 1. The overview of combining node-level and graph-level pre-training strategy: (a.i) Node-level pretraining only, node 

embeddings are not composable, and thus resulting graph embeddings are not separable. (a.ii) Graph-level pre-training only, node 

embeddings do not capture their domain-specific semantics. (a.iii) The pre-training strategy of the original work. Node embeddings 

are such that nodes of different types are well separated, while the embedding space is also composable. 

There are two main categories of pre-training strategies for graph neural networks: node-level and graph-level pre-training. 

Figure 1 gives an overview of these two strategies and the combining strategy. For node-level pre-training, the paper proposes two 

methods: Attribute Masking and Context Prediction. Attribute Masking involves randomly masking node or edge attributes and 

training the GNN to predict those masked attributes based on the neighboring graph structure. Context Prediction uses the node 

embedding to predict the context structure surrounding each node’s neighborhoods. For graph-level pre-training, the paper uses 

supervised pre-training on the task of predicting various graph-level attributes. This allows the GNN to learn useful graph-level 
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representations. By combining both the node-level and graph-level pre-training strategies, the model learns useful local node 

embeddings that capture domain-specific semantics and then further obtains meaningful graph-level representations. 

3.1. Node-level pre-training 

Figure 2 illustrates the two node-level self-supervised pre-training methods proposed in the previous paper, including Context 

Prediction and Attribute Masking. Both methods are to force GNN to learn useful local structural and semantic information by 

predicting the context or attributes. This allows the model to learn meaningful node-level representations. 

3.1.1. Context prediction 

Context Prediction uses the node embeddings learned by GNN to predict the surrounding graph structure for each node. 

Specifically, a subgraph centered around a particular node is selected. This subgraph contains the K-hop neighborhood of the 

center node, where K is the number of GNN layers. The context graph is defined as the graph structure that is between r1 and r2 

hops away from the center node. By training to encode the context graph, the model can predict this context embedding using the 

embedding of the center node. 

3.1.2. Attribute masking  

Attribute Masking randomly masks node or edge attributes and trains GNN to predict those attributes. First, certain node attributes 

in the input graph (e.g., atom types) are randomly masked. Instead of training on original graph, GNN uses this masked graph to 

compute node embeddings. Then model uses these embeddings to predict the masked node/edge attributes. 

 

Figure 2. Two node-level pre-training strategies: (a)Context Prediction and (b)Attribute Masking for pre-training GNN 

Table 1. Model performance of reproducing 

Strategy BACE BBBP Clintox 

 AUC Precision AUC  Precision AUC Precision 

Without Pre- 

training 
70.0 65.4 71.1 59.4 57.6 46.9 

contextpred 78.3 79.0 71.4 57.2 70.5 64.2 

supervised 

contextpred 
81.4 77.1 69.6 58.8 71.9 60.3 

infomax 73.1 75.0 69.5 57.6 70.9 60.1 

supervised 

infomax 
78.6 80.3 67.9 60.8 72.2 56.8 

edgepred 81.6 78.6 70.9 58.2 67.2 46.9 

supervised 

edgepred 
78.9 73.3 71.7 61.8 71.7 58.2 

masking 78.7 73.5 71.3 59.2 79.9 64.5 

supervised 

masking 
79.2 76.7 69.1 60.8 76.9 55.4 
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3.2. Graph-level pre-training 

A graph-level pre-training strategy has also been proposed in this paper to learn useful graph-level representations. By using 

supervised pre-training tasks that predict properties or attributes of entire graphs. For example, in molecular property prediction, 

GNN can be pre-trained to predict various experimentally measured properties of molecules such as toxicity or binding affinity. 

By learning to predict these graph-level properties, the model can capture important domain-specific knowledge in its graph-level 

representations. These pre-trained graph-level embeddings can then be fine-tuned for specific downstream tasks, leading to 

improved performance. 

4. Results & Discussion 

4.1. Datasets  

By evaluating the node-level pre-training strategies on diverse datasets, we aim to demonstrate the effectiveness and 

generalizability of the approach within and beyond the domains explored in the original paper. Our experiments cover more graph 

types and different GNN architectures to provide a comprehensive assessment of the pre-training strategies in a broader context.  

4.1.1. Datasets for reproducing 

In our replication study, we choose three datasets from MoleculeNet[9], a benchmark for molecular property prediction. 

MoleculeNet includes multiple public datasets and establishes a standardized evaluation platform for molecular machine learning 

methods. From MoleculeNet, we select the BACE, BBBP, and ClinTox datasets. BACE is a binary classification task for predicting 

whether a molecule inhibits the human enzyme associated with Alzheimer’s disease. BBBP is another binary classification task 

that predicts a molecule’s ability to penetrate the blood brain barrier. ClinTox contains two binary classification tasks related to 

clinical trial toxicity and FDA approval status. 

Table 2. Model perfomance on various datasets 

Strategy Cora Cora (GIN) Cora & PubMed Amazon co-purchase 

Without Pre-training 60.5 59.9 58.7 90.13 

Attribute masking 63.2 58.8 62.2 90.98 

Context Prediction 58.6 64.3 / / 

 

For pre-training, we utilize the same pre-trained models from the paper, which have already pretrained on the large-scale 

ZINC15 and ChEMBL databases using a combination of node-level self-supervised strategies and graph-level supervised pre-

training. 

4.1.2. Datasets for extended evaluation 

For the second part of our project, we evaluate the generalizability of the node-level pre-training strategies proposed in the paper 

on broader domains beyond chemistry and biology. We conduct experiments on different domains and several widely used datasets: 

Cora, CiteSeer and PubMed the three datasets are citation network datasets, where nodes represent scientific publications, 

and edges represent citations between them. Each node has a feature vector representing the content of the publication and belongs 

to one of several classes representing research areas. We pretrain on other citation network datasets, Cora [10] and PubMed[11], 

and transfer the learned representations to CiteSeer[12]. PubMed has a larger number of nodes and classes. We combine Cora and 

PubMed for pre-training and transfer the learned representations to CiteSeer to evaluate the impact of using multiple source 

datasets. 

Amazon Computers and Amazon Photo These two datasets are derived from the Amazon copurchase graph [13], where 

nodes represent products, and edges indicate that two products are frequently bought together. We pretrain on the Amazon 

Computers dataset and transfer the learned representations to the Amazon Photo dataset to assess the transferability of 

representations across different product domains. 

4.2. Results 

4.2.1. Reproducing 

As shown in Table 1, the results from our replication study demonstrate the effectiveness of the pre-training strategies proposed 

in the paper. By comparing the performance of models with and without pre-training, we observe consistent improvements across 



Advances	in	Engineering	Innovation	|	Vol	12	|	10	October	2024	|	55

all three datasets. This overall improvement highlights the potential of pre-training in enhancing the model’s performance, 

especially when the downstream dataset is relatively small, as is the case with ClinTox. Comparing the different pre-training 

strategies, we observe that the supervised pre-training approaches generally outperform their unsupervised counterparts. This 

suggests that incorporating task-specific supervision during pre-training can further improve the learned representations. 

Overall, our replication study validates the findings of the original paper and demonstrates the effectiveness of the proposed 

pre-training strategies in improving the performance of GNN on molecular property prediction tasks. The consistent improvements 

across all three datasets highlight the potential of pre-training in enhancing the generalization ability and transferability of GNN 

in the chemistry domain. 

4.2.2. Extended evaluation 

From Table 2, the results of our experiments on broader domains demonstrate the effectiveness of the node-level pre-training 

strategies in improving the performance of GNN. For citation network datasets, Cora, CiteSeer, and PubMed, we observe that pre-

training on Cora and transferring the learned representations to CiteSeer leads to improved performance on GCN and GIN 

compared to training on CiteSeer without pre-training. When we pretrain on the combination of Cora and PubMed datasets and 

transfer to CiteSeer, we see a further improvement in performance, indicating the benefits of using multiple source and larger 

datasets during pre-training.  

In Amazon co-purchase datasets, Amazon computers and photo, pre-training on the Amazon computers dataset and transferring 

the learned representations to the Amazon Photo dataset also results ina significant performance boost compared to training on 

Amazon Photo without pre-training. This demonstrates the effectiveness of the pre-training strategies in capturing transferable 

knowledge across different product domains. 

In brief, our experiments on broader datasets have shown the generalizability and effectiveness of the node-level pre-training 

strategies in improving the performance of GNN across various domains and tasks. The results highlight the potential of pre-

training in enhancing the transferability of learned representations, which can reduce the reliance on large amounts of labeled data 

in the target domain. 

5. Conclusion 

In this project, we conducted a comprehensive study to evaluate the effectiveness and generalizability of the pre-training strategies 

for graph neural networks proposed in the paper. Our work consisted of two main parts: a replication study on molecular property 

prediction tasks to validate the findings of the original paper, and an evaluation of the pre-training strategies on broader domains 

beyond chemistry and biology. In the replication study, our results demonstrated overall improvements in performance across 

three datasets when using pre-trained GNN compared to the model without pre-training. These results prove the effectiveness of 

the proposed pre-training strategies in the chemistry domain. To assess the generalizability of the pre-training strategies, we 

conducted experiments on diverse datasets from other domains, including citation networks and co-purchase graphs. We evaluated 

the performance of GNN with and without pre-training and two node-level pre-training strategies, including Attribute Masking 

and Context Prediction. Our results showed that pre-training consistently improved the performance of GNN across the datasets 

in different domains, demonstrating the transferability of learned representations. Also, by combining multiple source datasets 

during pre-training, GNN probably can get a better performance. 

In conclusion, our project provides strong evidence for the effectiveness and generalizability of the pre-training strategies 

proposed in the paper, which suggests that the pre-training strategy of GNN is a valuable tool for improving the performance in 

various domains.  
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