
Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://aei.ewadirect.com

A multi-predictor based lossless ARGB texture compression

algorithm and FPGA implementation

Handong Mo

College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University

mohandong@foxmail.com

Abstract. In the fields of GPU and AI chip design, the frequent read and write operations on the color buffer data (ARGB), which

are intensive in graphical and image access, significantly impact performance. There is a need for applications that require random

access and only read small images once. To address this situation, this paper proposes an algorithm with lower modeling

complexity, yet achieving near-complex implementation results, along with its FPGA implementation method. Through actual

testing on multiple images, the average lossless compression rate reached 40.3%. With hardware acceleration, the execution

efficiency of the algorithm was further improved, ensuring both compression rate and speed, thus confirming the effectiveness of

the algorithm.

Keywords: lossless compression, image compression, texture compression, FPGA

1. Introduction

In the field of lossless image compression, numerous techniques have been developed. Reference [1] uses methods related to the

Deflate algorithm to compress images block by block, reference [2] proposes a lossless image compression method based on a

variable bit rate block coding acyclic graph model, and reference [3] proposes a lossless image compression method based on local

texture features. Ultimately, lossless image compression technologies are primarily framed by predictors, feedback mechanisms,

and entropy encoders. Among these, JPEG-LS, JPEG2000, CALIC, and the latest lossless image compression technology FLIF

all follow this framework [4][5][6].

In response to the above situation, the algorithm designed in this study adopts a block compression strategy, which divides a

complete image into multiple 8×8 blocks for compression, using a predictor with sufficiently low computational complexity and

Adaptive Arithmetic Coding (AAC) to ensure the algorithm is hardware-friendly while maintaining the compression rate, to meet

the stringent requirements for image read/write speed and power in graphic rendering and deep learning training.

2. Design of the lossless compression algorithm

The compression algorithm proposed in this paper follows these steps:

(1) Divide the image into multiple 8×8 tiles in raster scan order; the subsequent algorithm compresses each tile individually.

(2) Select an appropriate predictor based on the position of the pixel, and calculate the residuals.

(3) Determine if there are negative domain residuals. If there are negative domain residuals, remap them to the positive domain;

if not, proceed directly to entropy coding.

(4) Use adaptive arithmetic coding to encode the residuals, resulting in a shorter binary bitstream.

(5) Check if the binary bitstream from the entropy encoder has completed updating the multi-symbol probability table. If not,

continue with another round of entropy coding; if so, obtain the final compressed bitstream.

Advances	in	Engineering	Innovation	(2024)	Volume	9 EWA	Publishing
Published	online:	31	July	2024 DOI:	10.54254/2977-3903/9/2024093

Figure 1. Flowchart of the Compression Algorithm Implementation

Note: The illustration from top to bottom sequentially represents: after the 8×8 tile enters the predictor, determine if there are negative domain

residuals. If there are negative domain residuals, they need to be remapped to the positive domain before entering the entropy encoder. If not,

they can be directly input to the entropy encoder. After entering the entropy encoder, roughly determine if the multi-symbol probability table

update is complete. If not, return to the entropy encoder step. If it is complete, proceed to the final step of the compressed bitstream.

3. Implementation of the lossless compression algorithm

3.1. Selection of predictors

Different predictors are selected based on the position of the pixel within the block to calculate the pixel residuals, which is the

difference between the predicted pixel value and the original pixel value. The selection of predictors is shown in the figure.

Direct

Storage
 MED

 DPCM GAP

Figure 2. Different Predictors Used for Different Pixels within an 8*8 Block

Advances	in	Engineering	Innovation	|	Vol	9	|	31	July	2024	|	6363

3.2. DPCM

Differential Pulse Code Modulation (DPCM) is a digital signal encoding method that encodes the difference between consecutive

sampling points. This difference is usually smaller than the amplitude of the original signal, thus it can be represented with fewer

bits, thereby achieving data compression [7]. Compared to other complex encoding methods, DPCM is relatively simple to

implement, has low computational complexity, and is suitable for real-time processing. However, its performance is not ideal for

images with complex textures. The calculation formula for DPCM is as follows:

�̂� = {
𝑥𝑖−1,𝑗, 𝑖𝑓 ℎ = 0

𝑥𝑖,𝑗−1, 𝑖𝑓 𝑤 = 0

Where, 𝑥 is the original pixel value, �̂� is the predicted pixel value, and 𝑖 and 𝑗 are the horizontal and vertical coordinates

of the image block width 𝑤 and height ℎ, respectively.

3.3. MED

The basic idea of the MED (Median Edge Detector) predictor is to predict pixel values by calculating the median of the neighboring

pixel values of the current pixel, combined with gradient information. As a median predictor, the value of MED does not exceed

the range of a, b, and c, and it provides a prediction system that detects past and upcoming edges. Although its ability to predict

sharp edges is limited, in practice, it is sufficient to be used as a common predictor. The calculation formula for the MED median

predictor is as follows:

�̂� = {

𝑚𝑖𝑛(𝑎, 𝑏) , 𝑖𝑓 𝑐 ≥ 𝑚𝑎𝑥(𝑎, 𝑏)

𝑚𝑎𝑥(𝑎, 𝑏) , 𝑖𝑓 𝑐 ≤ 𝑚𝑖𝑛(𝑎, 𝑏)

𝑎 + 𝑏 − 𝑐 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐 𝑏

𝑎 𝑥

Figure 3. Reference Pixels for MED

3.4. GAP

To further improve prediction accuracy without significantly increasing resource consumption, we use a more precise predictor,

GAP (Gradient Adjusted Prediction). GAP prediction is primarily based on gradient information. To achieve this, its reference

pixel distribution is more extensive, as shown in Figure 4.

 𝐼𝑛𝑛 𝐼𝑛𝑛𝑒

 𝐼𝑛𝑤 𝐼𝑛 𝐼𝑛𝑒

𝐼𝑤𝑤 𝐼𝑤 𝐼

Figure 4. Reference Pixels for GAP

The modeling process of GAP is as follows:

𝑑ℎ = |𝐼𝑤 − 𝐼𝑤𝑤| + |𝐼𝑛 − 𝐼𝑛𝑤| + |𝐼𝑛𝑒 − 𝐼𝑛|
𝑑𝑣 = |𝐼𝑤 − 𝐼𝑛𝑤| + |𝐼𝑛 − 𝐼𝑛𝑛| + |𝐼𝑛𝑒 − 𝐼𝑛𝑛𝑒|

IF(𝑑𝑣 − 𝑑ℎ > 80){Severe horizontal edge} 𝐼 = 𝐼𝑤

ELSE IF (𝑑𝑣 − 𝑑ℎ < −80){Severe vertical edge} 𝐼 = 𝐼𝑛

ELSE {

𝐼 = (𝐼𝑤 + 𝐼𝑛)/2 + (𝐼𝑛𝑒 − 𝐼𝑛𝑤)/4

IF(𝑑𝑣 − 𝑑ℎ > 32){Horizontal edge} 𝐼 = (𝐼 + 𝐼𝑤)/2

ELSE IF(𝑑𝑣 − 𝑑ℎ > 8){Weak horizontal edge} 𝐼 = (3𝐼 + 𝐼𝑤)/4

ELSE IF(𝑑𝑣 − 𝑑ℎ < −32){Vertical edge} 𝐼 = (𝐼 + 𝐼𝑛)/2

6464	|	Advances	in	Engineering	Innovation	|	Vol	9	|	31	July	2024

ELSE IF(𝑑𝑣 − 𝑑ℎ < −8){Weak vertical edge} 𝐼 = (3𝐼 + 𝐼𝑛)/4

}

3.5. Residual remapping

Before entropy coding, the range of the predicted residual 𝐼 is [−255，255]. To minimize the number of symbols, it is necessary

to remap the predicted residuals in the negative domain to the positive integer domain. When 𝐼 ≤ 2z−1 = 128, the potential

prediction errors are rearranged as follows:

[−𝐼, . . . ,0,1, . . . , 𝐼, 𝐼 + 1, . . . , 2𝑧 − 1 − 𝐼]
⇒ [0, +1, −1, . . . , +𝐼, −𝐼, 𝐼 + 1, 𝐼 + 2, . . . , 2𝑧 − 1 − 𝐼]

3.6. Adaptive arithmetic coding

Arithmetic coding is a lossless data compression method that can significantly reduce signal redundancy. Its high compression

efficiency makes it widely used in image compression [8]. There are two coding modes for arithmetic coding: a fixed mode based

on probability statistics and an adaptive mode [9]. To achieve higher compression rates, this paper adopts the adaptive mode of

arithmetic coding. After remapping the prediction residuals, a residual distribution model suitable for entropy coding is obtained.

The predicted residuals of each Tile will mainly be distributed in the fixed range of [0, 255]. Therefore, we first divide the symbol

table of [0, 255] into 5 intervals as independent symbol probability models, and an escape symbol table of 5 characters within the

range [0, 4]. The escape symbol table’s role is to indicate the transition of the predicted residual to the correct coding interval when

it is not within the highest probability interval and to adaptively model the highest probability interval. First, the division of the [0,

255] range is as follows:

{0,8}､{9,24}､{25,51}､{52,107}､{108,255}

The updating rules are shown in the following flowchart:

Figure 5. Updating Logic of Adaptive Probability Intervals

When encoding each predicted residual, first determine if the residual falls within the maximum probability interval. If true,

encode directly and update the escape symbol count as the maximum probability judgment, while also updating the interval

frequency table and escape character frequency table. If false, encode the upper or lower boundary symbol of the symbol interval

based on whether the residual is greater than or less than, acting as the escape character and updating the probability. Next,

accurately encode the interval within the escape character interval, updating the probability and increasing the escape symbol

count, before aligning with the direct encoding scheme. It’s important to note that when encoding boundary symbols of the interval,

to reduce encoding of escape characters, base encoding and decoding on whether the maximum probability interval includes the

Advances	in	Engineering	Innovation	|	Vol	9	|	31	July	2024	|	6565

boundary symbols, avoiding redundant encoding in the probability table. Also, escape characters are not encoded when encoding

0 and 255.

Arithmetic coding compresses a string of numbers between [0, 1] using probabilities and the values of upper and lower bounds,

mapping the string to a decimal. To optimize for hardware implementation and avoid excessive resource use due to floating-point

calculations, this paper uses integer arithmetic coding. In integer arithmetic coding, initialize the upper bound ‘high’ to

0xFFFF_FFFF and the lower bound ‘low’ to 0x0000_0000. The formula for probability calculation is as follows:

𝑟𝑎𝑛𝑔𝑒 = ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤 + 1

ℎ𝑖𝑔ℎ = 𝑙𝑜𝑤 + (𝑟𝑎𝑛𝑔𝑒 × ℎ𝑖𝑔ℎ. 𝑝)/𝑠𝑢𝑚. 𝑝 − 1

𝑙𝑜𝑤 = 𝑙𝑜𝑤 + (𝑟𝑎𝑛𝑔𝑒 × 𝑙𝑜𝑤. 𝑝)/𝑠𝑢𝑚. 𝑝

Through the calculation of the formula, we can observe that with each update, ‘high’ gradually becomes smaller while ‘low’

becomes larger, but ‘high’ always remains greater than ‘low’. When the highest bit of ‘high’ changes from 1 to 0, or the highest

bit of ‘low’ changes from 0 to 1, outputting the highest bit will yield the compressed binary data.

4. FPGA system implementation

4.1. FPGA design method

We read a complete BMP image from the host computer and store it on an SD card. On the FPGA development board, we write

the complete image stored on the SD card into the DDR memory. A tile of data is then transferred to the compression unit. The

data from the tile transferred to the compression unit first passes through a predictor module to obtain the predicted value for each

pixel. The predicted pixel values are then passed to a residual calculation module, which computes the prediction error for each

pixel by comparing it with the original pixel data. The range of residual values calculated by the residual calculation module is

between -255 and 255. To facilitate encoding with an adaptive arithmetic coder, we remap the predicted residuals to a predefined

range([0,255]) and pass the remapped predicted residuals to the adaptive arithmetic coding module for encoding. The binary stream

obtained after encoding is transferred back to DDR memory.

4.2. FPGA verification

The development platform used in this paper is Vivado 2020.1, employing the Zynq UltraScale+ series FPGA chip. By reading

data via ILA and using the Vitis debugging tool Monitors to inspect data in DDR, we confirm that the hardware implementation

is consistent with the software implementation. Figure 6 shows the compressed image data of an 8*8 tile, with spatial redundancy

represented by zeros.

Figure 6. Compressed Data of an 8*8 Tile

6666	|	Advances	in	Engineering	Innovation	|	Vol	9	|	31	July	2024

5. Test results

Table 1. Compression Ratio of Test Images

Image Compression Ratio

sample01 6.39341%

sample02 14.4655%

sample03 37.4717%

sample04 44.8294%

sample05 37.4966%

sample06 51.6057%

sample07 55.7127%

sample08 59.2156%

sample09 61.8144%

sample10 27.6704%

sample11 24.9482%

sample12 40.7329%

sample13 59.6722%

sample14 27.246%

sample15 55.4999%

sample16 31.5251%

sample17 43.0409%

sample18 23.7606%

sample19 46.8579%

sample20 39.366%

sample21 17.053%

sample22 12.0119%

sample23 18.1744%

sample24 15.639%

sample25 48.9125%

sample26 66.2086%

sample27 53.7823%

sample28 44.7829%

sample29 58.9855%

sample30 54.9254%

sample31 57.7403%

sample32 24.2626%

sample33 68.1198%

Average 40.3007%

6. Conclusion

This paper proposes a multi-predictor-based ARGB lossless texture compression algorithm. To facilitate hardware implementation,

integer adaptive arithmetic coding is employed, achieving high compression ratios under low complexity. Consistency between

software implementation and hardware verification validates the correctness and effectiveness of the algorithm, providing new

insights for further research in the field of lossless image compression.

References

[1] Yin, M., & Sun, G. (2024). FPGA design of a lossless ARGB data compression and decompression algorithm. Computer Measurement

& Control, 32(02), 317-324. https://doi.org/10.16526/j.cnki.11-4762/tp.2024.02.045

Advances	in	Engineering	Innovation	|	Vol	9	|	31	July	2024	|	6767

[2] Chen, D., Yu, M., Dai, M., et al. (2020). Lossless image compression of acyclic graphs based on variable bit-rate coding. Control

Engineering, 27(05), 812-818. https://doi.org/10.14107/j.cnki.kzgc.20190452

[3] Jiang, H., & Zhou, X. (2003). Lossless image compression based on local texture features. Journal of Beijing University of Aeronautics

and Astronautics, (06), 505-508. https://doi.org/10.13700/j.bh.1001-5965.2003.06.009

[4] Weinberger, M. J., Seroussi, G., & Sapiro, G. (2000). The LOCO-I lossless image compression algorithm: principles and standardization

into JPEG-LS. IEEE Transactions on Image Processing, 9(8), 1209-1224.

[5] Sheikh, H. R., Bovik, A. C., & Cormack, L. (2005). No-reference quality assessment using natural scene statistics: JPEG2000. IEEE

Transactions on Image Processing, 14(11), 1918-1927.

[6] Wu, X., & Memon, N. (2000). Context-based lossless interband compression--extending CALIC. IEEE Transactions on Image

Processing, 9(6), 994-1001.

[7] Wu, X. (1997). Lossless compression of continuous-tone images via context selection, quantization, and modeling. IEEE Transactions

on Image Processing, 6(5), 656-664.

[8] Wu, X. (2017). Research on arithmetic coding algorithm in image compression. Computer and Digital Engineering, 45(09), 1863-1865.

[9] Wang, C., & Wang, J. (2004). Data compression method based on energy threshold and adaptive arithmetic coding. Power System

Automation, (24), 56-60.

6868	|	Advances	in	Engineering	Innovation	|	Vol	9	|	31	July	2024

